The Fermat quotient for a number and a prime base is defined as
(1) |
If , then
(2) |
|||
(3) |
(mod ), where the modulus is taken as a fractional congruence.
The special case is given by
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
all again (mod ) where the modulus is taken as a fractional congruence, is the digamma function, and the last two equations hold for odd primes only.
is an integer for a prime, with the values for , 3, 5, ... being 1, 3, 2, 5, 3, 13, 3, 17, 1, 6, ....
The quantity is known to be congruent to zero (mod ) for only two primes: the so-called Wieferich primes 1093 and 3511 (Lehmer 1981, Crandall 1986).
REFERENCES:
Crandall, R. Projects in Scientific Computation. New York: Springer-Verlag, 1986.
Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, p. 105, 2005.
Lehmer, D. H. "On Fermat's Quotient, Base Two." Math. Comput. 36, 289-290, 1981.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 70, 1986.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|