Read More
Date: 17-12-2019
![]()
Date: 3-2-2021
![]()
Date: 10-1-2020
![]() |
A Lambert series is a series of the form
![]() |
(1) |
for . Then
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where
![]() |
(4) |
The particular case is sometimes denoted
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
for (Borwein and Borwein 1987, pp. 91 and 95), where
is a q-polygamma function. Special cases and related sums include
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
(Borwein and Borwein 1997, pp. 91-92), which arise in the reciprocal Fibonacci and reciprocal Lucas constants.
Some beautiful series of this type include
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
where is the Möbius function,
is the totient function,
is the number of divisors of
,
is the q-polygamma function,
is the divisor function,
is the number of representations of
in the form
where
and
are rational integers (Hardy and Wright 1979),
is a Jacobi elliptic function (Bailey et al. 2006),
is the Liouville function, and
is the least significant bit of
.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Number Theoretic Functions." §24.3.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 826-827, 1972.
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 24-15, 1997.
Arndt, J. "On Computing the Generalized Lambert Series." 24 Jun 2012. https://arxiv.org/abs/1202.6525.
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006.
Borwein, J. M. and Borwein, P. B. "Evaluation of Sums of Reciprocals of Fibonacci Sequences." §3.7 in Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 91-101, 1987.
Erdős, P. "On Arithmetical Properties of Lambert Series." J. Indian Math. Soc. 12, 63-66, 1948.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 257-258, 1979.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|