Mertens Function					
				 
				
					
						
						 المؤلف:  
						Deléglise, M. and Rivat, J.					
					
						
						 المصدر:  
						 "Computing the Summation of the Möbius Function." Experiment. Math. 5					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						18-8-2020
					
					
						
						1880					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Mertens Function
 
 

The Mertens function is the summary function
	
		
			  | 
			
			 (1) 
			 | 
		
	
where 
 is the Möbius function (Mertens 1897; Havil 2003, p. 208). The first few values are 1, 0, 
, 
, 
, 
, 
, 
, 
, 
, 
, 
, ... (OEIS A002321). 
 is also given by the determinant of the 
 Redheffer matrix.
Values of 
 for 
, 1, 2, ... are given by 1, 
, 1, 2, 
, 
, 212, 1037, 1928, 
, ... (OEIS A084237; Deléglise and Rivat 1996).
The following table summarizes the first few values of 
 at which 
 for various 
	
		
			  | 
			OEIS | 
			  such that   | 
		
		
			  | 
			  | 
			13, 19, 20, 30, 33, 43, 44, 45, 47, 48, 49, 50, ... | 
		
		
			  | 
			  | 
			5, 7, 8, 9, 11, 12, 14, 17, 18, 21, 23, 24, 25, 29, ... | 
		
		
			  | 
			  | 
			3, 4, 6, 10, 15, 16, 22, 26, 27, 28, 35, 36, 38, ... | 
		
		
			| 0 | 
			A028442 | 
			2, 39, 40, 58, 65, 93, 101, 145, 149, 150, ... | 
		
		
			| 1 | 
			A118684 | 
			1, 94, 97, 98, 99, 100, 146, 147, 148, 161, ... | 
		
		
			| 2 | 
			  | 
			95, 96, 217, 229, 335, 336, 339, 340, 345, 347, 348, ... | 
		
		
			| 3 | 
			  | 
			218, 223, 224, 225, 227, 228, 341, 342, 343, 344, 346, ... | 
		
	
An analytic formula for 
 is not known, although Titchmarsh (1960) showed that if the Riemann hypothesis holds and if there are no multiple Riemann zeta function zeros, then there is a sequence 
 with 
 such that
	
		
			  | 
			
			 (2) 
			 | 
		
	
where 
 is the Riemann zeta function,
	
		
			 {M(x)-1/2mu(x)   if x in Z^+; M(x)   otherwise, " src="https://mathworld.wolfram.com/images/equations/MertensFunction/NumberedEquation3.gif" style="height:48px; width:222px" /> | 
			
			 (3) 
			 | 
		
	
and 
 runs over all nontrivial zeros of the Riemann zeta function (Odlyzko and te Riele 1985).
The Mertens function is related to the number of squarefree integers up to 
, which is the sum from 1 to 
 of the absolute value of 
,
	
		
			  | 
			
			 (4) 
			 | 
		
	
The Mertens function also obeys
	
		
			  | 
			
			 (5) 
			 | 
		
	
(Lehman 1960).
Mertens (1897) verified that 
 for 
 and conjectured that this inequality holds for all nonnegative 
. The statement
	
		
			  | 
			
			 (6) 
			 | 
		
	
is therefore known as the Mertens conjecture, although it has since been disproved.
Lehman (1960) gives an algorithm for computing 
 with 
 operations, while the Lagarias-Odlyzko (1987) algorithm for computing the prime counting function 
 can be modified to give 
 in 
 operations. Deléglise and Rivat 1996) described an elementary method for computing isolated values of 
 with time complexity 
 and space complexity 
.
REFERENCES:
Deléglise, M. and Rivat, J. "Computing the Summation of the Möbius Function." Experiment. Math. 5, 291-295, 1996.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, p. 250, 2004.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 208-210, 2003.
Lagarias, J. and Odlyzko, A. "Computing 
: An Analytic Method." J. Algorithms 8, 173-191, 1987.
Lehman, R. S. "On Liouville's Function." Math. Comput. 14, 311-320, 1960.
Lehmer, D. H. Guide to Tables in the Theory of Numbers. Bulletin No. 105. Washington, DC: National Research Council, pp. 7-10, 1941.
Mertens, F. "Über einige asymptotische Gesetze der Zahlentheorie." J. reine angew. Math. 77, 46-62, 1874.
Mertens, F. "Über eine zahlentheoretische Funktion." Akad. Wiss. Wien Math.-Natur. Kl. Sitzungsber. IIa 106, 761-830, 1897.
Odlyzko, A. M. and te Riele, H. J. J. "Disproof of the Mertens Conjecture." J. reine angew. Math. 357, 138-160, 1985.
Sloane, N. J. A. Sequences A002321/M0102, A028442, A084237, and A118684 in "The On-Line Encyclopedia of Integer Sequences."
Sterneck, R. D. von. "Empirische Untersuchung über den Verlauf der zahlentheoretischer Function 
 im Intervalle von 0 bis 150 000." Sitzungsber. der Kaiserlichen Akademie der Wissenschaften Wien, Math.-Naturwiss. Klasse 2a 106, 835-1024, 1897.
Titchmarsh, E. C. The Theory of Functions, 2nd ed. Oxford, England: Oxford University Press, 1960.
				
				
					
					
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة