المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

التكاثر في المشمش
5-1-2016
Alternative models
2024-11-22
معنى الظليل
2024-05-04
بدايةُ الخِلاف بَين الوثنيّين
18-4-2017
المقاومة في الدائرة الالكترونية
28-9-2021
أمنمحات الثالث وأخلاقه من فن عصره.
2024-02-21

The Structures of Complexes  
  
1205   04:29 مساءً   date: 3-6-2020
Author : LibreTexts Project
Book or Source : ................
Page and Part : .................


Read More
Date: 1-1-2017 1305
Date: 21-3-2017 1848
Date: 8-3-2019 1359

The Structures of Complexes

The most common structures of the complexes in coordination compounds are octahedral, tetrahedral, and square planar (Figure 1 ). For transition metal complexes, the coordination number determines the geometry around the central metal ion. Table 25.3.3 compares coordination numbers to the molecular geometry:

alt

Figure 1 : These are geometries of some complexes with coordination numbers of seven and eight

Table 1.1: Coordination Numbers and Molecular Geometry

 
Coordination Number Molecular Geometry Example
2 linear [Ag(NH3)2]+
3 trigonal planar [Cu(CN)3]2−
4 tetrahedral(d0 or d10), low oxidation states for M [Ni(CO)4]
4 square planar (d8) [NiCl4]2−
5 trigonal bipyramidal [CoCl5]2−
5 square pyramidal [VO(CN)4]2−
6 octahedral [CoCl6]3−
7 pentagonal bipyramid [ZrF7]3−
8 square antiprism [ReF8]2−
8 dodecahedron [Mo(CN)8]4−
9 and above more complicated structures [ReH9]2−

Unlike main group atoms in which both the bonding and nonbonding electrons determine the molecular shape, the nonbonding d-electrons do not change the arrangement of the ligands. Octahedral complexes have a coordination number of six, and the six donor atoms are arranged at the corners of an octahedron around the central metal ion. Examples are shown in Figure 2 . The chloride and nitrate anions in [Co(H2O)6]Cl2 and [Cr(en)3](NO3)3, and the potassium cations in K2[PtCl6], are outside the brackets and are not bonded to the metal ion.

alt

Figure 2 : Many transition metal complexes adopt octahedral geometries, with six donor atoms forming bond angles of 90° about the central atom with adjacent ligands. Note that only ligands within the coordination sphere affect the geometry around the metal center.

For transition metals with a coordination number of four, two different geometries are possible: tetrahedral or square planar. Unlike main group elements, where these geometries can be predicted from VSEPR theory, a more detailed discussion of transition metal orbitals (discussed in the section on Crystal Field Theory) is required to predict which complexes will be tetrahedral and which will be square planar. In tetrahedral complexes such as [Zn(CN)4]2− (Figure 3 ), each of the ligand pairs forms an angle of 109.5°. In square planar complexes, such as [Pt(NH3)2Cl2], each ligand has two other ligands at 90° angles (called the cis positions) and one additional ligand at an 180° angle, in the trans position.

Two structures are shown. In a, inside of brackets, a central Z n atom is bonded to 4 C atoms in a tetrahedral spatial arrangement. Short line segments are used to represent a bond extending above and down and to the left of the Z n atom. A dashed wedge with the vertex at the Z n atom and wide end at the C atom is used to represent a bond down and to the right of the Z n atom. The final bond is indicated by a similar solid wedge again directed down and only slightly right of the center beneath the Z n atom. Four groups of three parallel short line segments are shown indicating triple bonds extending from each C atom opposite the bond with Z n to an associated N atom. Outside the brackets a superscript of 2 negative is shown. In b, at the center of this structure is a P t atom. From this atom, a single bond represented by a dashed wedge extends from a vertex at the P t atom up and to the right to the N atom of an N H subscript 3 group. Similarly, a single bond represented by a solid wedge extends from a vertex at the P t atom down and to the right to the N atom of an N H subscript 3 group. Another single bond represented by a dashed wedge extends from a vertex at the P t atom up and to the left to a C l atom. Similarly, a single bond represented by a solid wedge extends from a vertex at the P t atom down and to the left to a C l atom.

Figure 3 : Transition metals with a coordination number of four can adopt a tetrahedral geometry (a) as in K2[Zn(CN)4] or a square planar geometry (b) as shown in [Pt(NH3)2Cl2].




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .