المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

مراحل استخراج المعادن
29-1-2023
تطوير سياحة المؤتمرات في الوطن العربي
13-4-2022
الإمام الكاظم ( عليه السّلام ) وحكومة المهدي العبّاسي
8-1-2023
ناتو Natto
19-4-2019
أربعة مراحل لتكوين الرأي العام
1-8-2022
تصوير قطرات المياه Splash
1-1-2022

Diophantine Equation--nth Powers  
  
1288   05:49 مساءً   date: 24-5-2020
Author : Gloden, A.
Book or Source : Mehrgradige Gleichungen. Groningen, Netherlands: P. Noordhoff, 1944.
Page and Part : ...


Read More
Date: 20-7-2020 1115
Date: 16-8-2020 557
Date: 27-2-2020 598

Diophantine Equation--nth Powers

The 2-1 equation

 A^n+B^n=C^n

(1)

is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for which a solution to

 x_1^k+x_2^k+...+x_m^k=y_1^k+y_2^k+...+y_n^k,

(2)

with 1<=m<=n is known. An updated table is given below; a more extensive table may be found at Meyrignac's web site.

km 1 2 3 4 5 6
2 2          
3 3 2        
4 3 2        
5 4 3        
6 7 5 3      
7 7 6 5 4    
8 8 7 5 5    
9 10 9 8 6 5  
10 13 12 11 9 7 6

Take the results from the Ramanujan 6-10-8 identity that for ad=bc, with

 F_(2m)(a,b,c,d)=(a+b+c)^(2m)+(b+c+d)^(2m) 
 -(c+d+a)^(2m)-(d+a+b)^(2m)+(a-d)^(2m)-(b-c)^(2m)

(3)

and

 f_(2m)(x,y)=(1+x+y)^(2m)+(x+y+xy)^(2m) 
 -(y+xy+1)^(2m)-(xy+1+x)^(2m)+(1-xy)^(2m)-(x-y)^(2m),

(4)

then

 F_(2m)(a,b,c,d)=a^(2m)f_(2m)(x,y).

(5)

Using

f_2(x,y) = 0

(6)

f_4(x,y) = 0

(7)

now gives

 (a+b+c)^n+(b+c+d)^n+(a-d)^n 
 =(c+d+a)^n+(d+a+b)^n+(b-c)^n

(8)

for n=2 or 4.


REFERENCES:

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 101, 1994.

Berndt, B. C. and Bhargava, S. "Ramanujan--For Lowbrows." Amer. Math. Monthly 100, 644-656, 1993.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 653-657, 2005.

Gloden, A. Mehrgradige Gleichungen. Groningen, Netherlands: P. Noordhoff, 1944.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. "A Survey of Equal Sums of Like Powers." Math. Comput. 21, 446-459, 1967.

Meyrignac, J.-C. "Computing Minimal Equal Sums of Like Powers." https://euler.free.fr.

Reznick, B. Sums of Even Powers of Real Linear Forms. Providence, RI: Amer. Math. Soc., 1992.

Sekigawa, H. and Koyama, K. "Nonexistence Conditions of a Solution for the Congruence x_1^k+...+x_s^k=N (mod p^n)." Math. Comput. 68, 1283-1297, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.