تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Square Triangle Picking
المؤلف:
Alagar, V. S.
المصدر:
"On the Distribution of a Random Triangle." J. Appl. Prob. 14
الجزء والصفحة:
...
13-2-2020
1958
Square Triangle Picking
Square triangle picking is the selection of triples of points (corresponding to endpoints of a triangle) randomly placed inside a square. random triangles can be picked in a unit square in the Wolfram Language using the function RandomPoint[Rectangle[],
{" src="http://mathworld.wolfram.com/images/equations/SquareTrianglePicking/Inline2.gif" style="height:15px; width:5px" />n, 3
}" src="http://mathworld.wolfram.com/images/equations/SquareTrianglePicking/Inline3.gif" style="height:15px; width:5px" />].
Given three points chosen at random inside a unit square, the average area of the triangle determined by these points is given analytically by the multiple integrals
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
Here, represent the polygon vertices of the triangle for
, 2, 3, and the (signed) area of these triangles is given by the determinant
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
The solution was first given by Woolhouse (1867). Since attempting to do the integrals by brute force result in intractable integrands, the best approach using computer algebra is to divide the six-dimensional region of integration into subregions using cylindrical algebraic decomposition such that the sign of does not change, do the integral in each region directly, and then combine the results (Trott 1998). Depending on the order in which the integration variables are ordered, between 32 and 4168 regions are obtained. The result of combining these pieces gives the mean triangle area
![]() |
(5) |
(Ambartzumian 1987, Pfiefer 1989, Trott 1998; Trott 2006, pp. 303-304).
Once is known, the variance in area is easily calculated by first computing the raw moment
,
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
giving
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
The distribution function for the area of a random triangle inscribed in a square is given exactly by
![]() |
(11) |
(M. Trott, pers. comm., Jan. 27, 2005; Trott 2006, p. 306). The corresponding distribution function is given by
![]() |
(12) |
(Philip).
satisfies the beautiful fourth-order ordinary differential equation
![]() |
(13) |
(M. Trott, pers. comm., Jan. 27, 2005; Trott 2006, p. 307).
This gives the beautiful formula for raw moments as
![]() |
(14) |
where is a harmonic number, so the raw moments for
, 2, ... are 11/144, 1/96, 137/9000, 1/2400, 363/109760, ... (OEIS A093158 and A093159).
A closed form is more difficult to compute for the th central moments
, but the first few for
, 2, ... are 0, 95/20736, 75979/186624000, 1752451/17915904000, ... (OEIS A103281 and A103282; Trott 2006, p. 307).
A closed form for the probability that a given point lies within a randomly picked triangle can also be obtained as
![]() |
(15) |
where
![]() |
(16) |
(M. Trott, pers. comm., Jan. 31, 2005; Trott 2006, p. 310). This is expression is valid for and
, with the expression over the whole unit square given by symmetry as
![]() |
(17) |
As expected, this expression satisfies
![]() |
(18) |
Pick three points at random in the unit square, and denote the probability that the three points form an obtuse triangle by . Langford (1969) proved that
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
(OEIS A093072).
REFERENCES:
Alagar, V. S. "On the Distribution of a Random Triangle." J. Appl. Prob. 14, 284-297, 1977.
Ambartzumian, R. V. (Ed.). Stochastic and Integral Geometry. Dordrecht, Netherlands: Reidel, 1987.
Buchta, C. "Über die konvexe Hülle von Zufallspunkten in Eibereichen." Elem. Math. 38, 153-156, 1983.
Buchta, C. "Zufallspolygone in konvexen Vielecken." J. reine angew. Math. 347, 212-220, 1984.
Finch, S. R. "Geometric Probability Constants." §8.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 479-484, 2003.
Henze, N. "Random Triangles in Convex Regions." J. Appl. Prob. 20, 111-125, 1983.
Klee, V. "What Is the Expected Volume of a Simplex Whose Vertices Are Chosen at Random from a Given Convex Body." Amer. Math. Monthly 76, 286-288, 1969.
Langford, E. "The Probability that a Random Triangle is Obtuse." Biometrika 56, 689-690, 1969.
Pfiefer, R. E. "The Historical Development of J. J. Sylvester's Four Point Problem." Math. Mag. 62, 309-317, 1989.
Philip, J. "The Area of a Random Convex Polygon." Tech. Report TRITA MAT 04 MA 07. n.d. http://www.math.kth.se/~johanph/area12.pdf.
Santaló, L. A. Integral Geometry and Geometric Probability. Reading, MA: Addison-Wesley, 1976.
Seidov, Z. F. "Letters: Random Triangle." Mathematica J. 7, 414, 2000.
Seidov, Z. F. 2000. http://axchiv.org/abs/math.GM/0002134/.
Sloane, N. J. A. Sequences A093072, A093158, A093159, A103281, and A103282 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. "The Area of a Random Triangle." Mathematica J. 7, 189-198, 1998. http://library.wolfram.com/infocenter/Articles/3413/.
Trott, M. "Area of a Random Triangle in a Square." §1.10.1 in The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, pp. 298-311, 2006. http://www.mathematicaguidebooks.org/.
Woolhouse, W. S. B. "Question 2471." Mathematical Questions, with Their Solutions, from the Educational Times, Vol. 8. London: F. Hodgson and Son, pp. 100-105, 1867.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
