Read More
Date: 17-1-2021
742
Date: 5-6-2020
2086
Date: 16-1-2020
557
|
The 5.1.2 fifth-order Diophantine equation
(1) |
is a special case of Fermat's last theorem with , and so has no solution. improving on the results on Lander et al. (1967), who checked up to . (In fact, no solutions are known for powers of 6 or 7 either.) No solutions to the 5.1.3 equation
(2) |
are known (Lander et al. 1967). For 4 fifth powers, the 5.1.4 equation has solutions
(3) |
|||
(4) |
(Lander and Parkin 1967, Lander et al. 1967, Ekl 1998), the second of which was found by J. Frye (J.-C. Meyrignac, pers. comm., Sep. 9, 2004), but it is not known if there is a parametric solution (Guy 1994, p. 140). Sastry (1934) found a 2-parameter solution for 5.1.5 equations
(5) |
(quoted in Lander and Parkin 1967), and Lander and Parkin (1967) found the smallest numerical solutions. Lander et al. (1967) give a list of the smallest solutions, the first few being
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
|||
(15) |
|||
(16) |
|||
(17) |
(Lander and Parkin 1967, Lander et al. 1967). The 5.1.6 equation has solutions
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
|||
(24) |
|||
(25) |
(Martin 1887, 1888, Lander and Parkin 1967, Lander et al. 1967). The smallest 5.1.7 solution is
(26) |
(Lander et al. 1967).
No solutions to the 5.2.2 equation
(27) |
are known, despite the fact that sums up to have been checked (Guy 1994, p. 140). The smallest 5.2.3 solution is
(28) |
(B. Scher and E. Seidl 1996, Ekl 1998). Sastry's (1934) 5.1.5 solution gives some 5.2.4 solutions. The smallest primitive 5.2.4 solutions are
(29) |
|||
(30) |
|||
(31) |
|||
(32) |
|||
(33) |
|||
(34) |
|||
(35) |
|||
(36) |
|||
(37) |
|||
(38) |
(Rao 1934, Moessner 1948, Lander et al. 1967). The smallest primitive 5.2.5 solutions are
(39) |
|||
(40) |
|||
(41) |
|||
(42) |
|||
(43) |
|||
(44) |
(Rao 1934, Lander et al. 1967).
Parametric solutions are known for the 5.3.3 (Sastry and Lander 1934; Moessner 1951; Swinnerton-Dyer 1952; Lander 1968; Bremmer 1981; Guy 1994, pp. 140 and 142; Choudhry 1999). Swinnerton-Dyer (1952) gave two parametric solutions to the 5.3.3 equation but, forty years later, W. Gosper discovered that the second scheme has an unfixable bug. Choudhry (1999) gave a parametric solution to the more general equation
(45) |
with . The smallest primitive solutions to the 5.3.3 equation with unit coefficients are
(46) |
|||
(47) |
|||
(48) |
|||
(49) |
|||
(50) |
(Moessner 1939, Moessner 1948, Lander et al. 1967, Ekl 1998).
A two-parameter solution to the 5.3.4 equation was given by Xeroudakes and Moessner (1958). Gloden (1949) also gave a parametric solution. The smallest solution is
(51) |
(Rao 1934, Lander et al. 1967).
Several parametric solutions to the 5.4.4 equation were found by Xeroudakes and Moessner (1958).
The smallest 5.4.4 solution is
(52) |
(Rao 1934, Lander et al. 1967). The first 5.4.4.4 equation is
(53) |
|||
(54) |
(Lander et al. 1967).
Moessner and Gloden (1944) give the 5.5.6 solution
(55) |
Chen Shuwen found the 5.6.6 solution
(56) |
REFERENCES:
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 95, 1994.
Bremner, A. "A Geometric Approach to Equal Sums of Fifth Powers." J. Number Th. 13, 337-354, 1981.
Choudhry, A. "The Diophantine Equation ." Rocky Mtn. J. Math. 29, 459-462, 1999.
Dutch, S. "Sums of Fifth and Higher Powers." https://www.uwgb.edu/dutchs/RECMATH/rmpowers.htm#5power.
Ekl, R. L. "New Results in Equal Sums of Like Powers." Math. Comput. 67, 1309-1315, 1998.
Gloden, A. "Über mehrgeradige Gleichungen." Arch. Math. 1, 482-483, 1949.
Guy, R. K. "Sums of Like Powers. Euler's Conjecture." §D1 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994.
Lander, L. J. "Geometric Aspects of Diophantine Equations Involving Equal Sums of Like Power." Amer. Math. Monthly 75, 1061-1073, 1968.
Lander, L. J. and Parkin, T. R. "A Counterexample to Euler's Sum of Powers Conjecture." Math. Comput. 21, 101-103, 1967.
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. "A Survey of Equal Sums of Like Powers." Math. Comput. 21, 446-459, 1967.
Martin, A. "Methods of Finding th-Power Numbers Whose Sum is an th Power; With Examples." Bull. Philos. Soc. Washington 10, 107-110, 1887.
Martin, A. Smithsonian Misc. Coll. 33, 1888.
Martin, A. "About Fifth-Power Numbers whose Sum is a Fifth Power." Math. Mag. 2, 201-208, 1896.
Meyrignac, J.-C. "Computing Minimal Equal Sums of Like Powers." https://euler.free.fr.
Moessner, A. "Einige numerische Identitäten." Proc. Indian Acad. Sci. Sect. A 10, 296-306, 1939.
Moessner, A. "Alcune richerche di teoria dei numeri e problemi diofantei." Bol. Soc. Mat. Mexicana 2, 36-39, 1948.
Moessner, A. "Due Sistemi Diofantei." Boll. Un. Mat. Ital. 6, 117-118, 1951.
Moessner, A. and Gloden, A. "Einige Zahlentheoretische Untersuchungen und Resultate." Bull. Sci. École Polytech. de Timisoara 11, 196-219, 1944.
Rao, K. S. "On Sums of Fifth Powers." J. London Math. Soc. 9, 170-171, 1934.
Sastry, S. and Chowla, S. "On Sums of Powers." J. London Math. Soc. 9, 242-246, 1934.
Swinnerton-Dyer, H. P. F. "A Solution of ." Proc. Cambridge Phil. Soc. 48, 516-518, 1952.
Xeroudakes, G. and Moessner, A. "On Equal Sums of Like Powers." Proc. Indian Acad. Sci. Sect. A 48, 245-255, 1958.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|