

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Diophantine Equation
المؤلف:
Alpern, D
المصدر:
"Sums of Powers." https://www.alpertron.com.ar/SUMPOWER.HTM.
الجزء والصفحة:
...
20-5-2020
2045
Diophantine Equation
A Diophantine equation is an equation in which only integer solutions are allowed.
Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary Diophantine equation has a solution. Such an algorithm does exist for the solution of first-order Diophantine equations. However, the impossibility of obtaining a general solution was proven by Yuri Matiyasevich in 1970 (Matiyasevich 1970, Davis 1973, Davis and Hersh 1973, Davis 1982, Matiyasevich 1993) by showing that the relation
(where
is the
th Fibonacci number) is Diophantine. More specifically, Matiyasevich showed that there is a polynomial
in
,
, and a number of other variables
,
,
, ... having the property that
iff there exist integers
,
,
, ... such that
.
Matiyasevich's result filled a crucial gap in previous work by Martin Davis, Hilary Putnam, and Julia Robinson. Subsequent work by Matiyasevich and Robinson proved that even for equations in thirteen variables, no algorithm can exist to determine whether there is a solution. Matiyasevich then improved this result to equations in only nine variables (Jones and Matiyasevich 1982).
Ogilvy and Anderson (1988) give a number of Diophantine equations with known and unknown solutions.
A linear Diophantine equation (in two variables) is an equation of the general form
![]() |
(1) |
where solutions are sought with
,
, and
integers. Such equations can be solved completely, and the first known solution was constructed by Brahmagupta. Consider the equation
![]() |
(2) |
Now use a variation of the Euclidean algorithm, letting
and 
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Starting from the bottom gives
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
so
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
Continue this procedure all the way back to the top.
Take as an example the equation
![]() |
(11) |
and apply the algorithm above to obtain
![]() |
(12) |
The solution is therefore
,
.
The above procedure can be simplified by noting that the two leftmost columns are offset by one entry and alternate signs, as they must since
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
so the coefficients of
and
are the same and
![]() |
(16) |
Repeating the above example using this information therefore gives
![]() |
(17) |
and we recover the above solution.
Call the solutions to
![]() |
(18) |
and
. If the signs in front of
or
are negative, then solve the above equation and take the signs of the solutions from the following table:
| equation | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
In fact, the solution to the equation
![]() |
(19) |
is equivalent to finding the continued fraction for
, with
and
relatively prime (Olds 1963). If there are
terms in the fraction, take the
th convergent
. But
![]() |
(20) |
so one solution is
,
, with a general solution
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
with
an arbitrary integer. The solution in terms of smallest positive integers is given by choosing an appropriate
.
Now consider the general first-order equation of the form
![]() |
(23) |
The greatest common divisor
can be divided through yielding
![]() |
(24) |
where
,
, and
. If
, then
is not an integer and the equation cannot have a solution in integers. A necessary and sufficient condition for the general first-order equation to have solutions in integers is therefore that
. If this is the case, then solve
![]() |
(25) |
and multiply the solutions by
, since
![]() |
(26) |
D. Wilson has compiled a list of the smallest
th powers of positive integers that are the sums of the
th powers of distinct smaller positive integers. The first few are 3, 5, 6, 15, 12, 25, 40, ...(OEIS A030052):
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
REFERENCES:
Alpern, D. "Sums of Powers." https://www.alpertron.com.ar/SUMPOWER.HTM.
Bashmakova, I. G. Diophantus and Diophantine Equations. Washington, DC: Math. Assoc. Amer., 1997.
Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.
Carmichael, R. D. The Theory of Numbers, and Diophantine Analysis. New York: Dover, 1959.
Courant, R. and Robbins, H. "Continued Fractions. Diophantine Equations." §2.4 in Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 49-51, 1996.
Davis, M. "Hilbert's Tenth Problem is Unsolvable." Amer. Math. Monthly 80, 233-269, 1973.
Davis, M. and Hersh, R. "Hilbert's 10th Problem." Sci. Amer. 229, 84-91, Nov. 1973.
Davis, M. "Hilbert's Tenth Problem is Unsolvable." Appendix 2 in Computability and Unsolvability. New York: Dover, 1999-235, 1982.
Dickson, L. E. "Linear Diophantine Equations and Congruences." Ch. 2 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, pp. 41-99, 2005.
dmoz. "Equal Sums of Like Powers." https://dmoz.org/Science/Math/Number_Theory/Diophantine_Equations/Equal_Sums_of_Like_Powers/.
Dörrie, H. "The Fermat-Gauss Impossibility Theorem." §21 in 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 96-104, 1965.
Ekl, R. L. "New Results in Equal Sums of Like Powers." Math. Comput. 67, 1309-1315, 1998.
Guy, R. K. "Diophantine Equations." Ch. D in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-198, 1994.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Hunter, J. A. H. and Madachy, J. S. "Diophantos and All That." Ch. 6 in Mathematical Diversions. New York: Dover, pp. 52-64, 1975.
Ireland, K. and Rosen, M. "Diophantine Equations." Ch. 17 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 269-296, 1990.
Jones, J. P. and Matiyasevich, Yu. V. "Exponential Diophantine Representation of Recursively Enumerable Sets." Proceedings of the Herbrand Symposium, Marseilles, 1981. Amsterdam, Netherlands: North-Holland, pp. 159-177, 1982.
Lang, S. Introduction to Diophantine Approximations, 2nd ed. New York: Springer-Verlag, 1995.
Matiyasevich, Yu. V. "Solution of the Tenth Problem of Hilbert." Mat. Lapok 21, 83-87, 1970.
Matiyasevich, Yu. V. Hilbert's Tenth Problem. Cambridge, MA: MIT Press, 1993. https://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/H10Pbook/.
Meyrignac, J.-C. "Computing Minimal Equal Sums of Like Powers." https://euler.free.fr/.
Mordell, L. J. Diophantine Equations. New York: Academic Press, 1969.
Nagell, T. "Diophantine Equations of First Degree." §10 in Introduction to Number Theory. New York: Wiley, pp. 29-32, 1951.
Ogilvy, C. S. and Anderson, J. T. "Diophantine Equations." Ch. 6 in Excursions in Number Theory. New York: Dover, pp. 65-83, 1988.
Olds, C. D. Ch. 2 in Continued Fractions. New York: Random House, 1963.
Sloane, N. J. A. Sequence A030052 in "The On-Line Encyclopedia of Integer Sequences."
Weisstein, E. W. "Books about Diophantine Equations." https://www.ericweisstein.com/encyclopedias/books/DiophantineEquations.html.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

































































































قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)