Read More
Date: 18-10-2020
599
Date: 17-11-2020
723
Date: 26-8-2020
1352
|
Find a square number such that, when a given integer is added or subtracted, new square numbers are obtained so that
(1) |
and
(2) |
This problem was posed by the mathematicians Théodore and Jean de Palerma in a mathematical tournament organized by Frederick II in Pisa in 1225. The solution (Ore 1988, pp. 188-191) is
(3) |
|||
(4) |
where and are integers. and are then given by
(5) |
|||
(6) |
Fibonacci proved that all numbers (the congrua) are divisible by 24. Fermat's right triangle theorem is equivalent to the result that a congruum cannot be a square number.
A table for small and is given in Ore (1988, p. 191), and a larger one (for ) by Lagrange (1977). The first
Sloane | A057103 | A055096 | A057104 | A057105 | |
2 | 1 | 24 | 5 | 7 | 1 |
3 | 1 | 96 | 10 | 14 | 2 |
3 | 2 | 120 | 13 | 17 | 7 |
4 | 1 | 240 | 17 | 23 | 7 |
4 | 2 | 384 | 20 | 28 | 4 |
4 | 3 | 336 | 25 | 31 | 17 |
REFERENCES:
Alter, R. and Curtz, T. B. "A Note on Congruent Numbers." Math. Comput. 28, 303-305, 1974.
Alter, R.; Curtz, T. B.; and Kubota, K. K. "Remarks and Results on Congruent Numbers." In Proc. Third Southeastern Conference on Combinatorics, Graph Theory, and Computing, 1972, Boca Raton, FL. Boca Raton, FL: Florida Atlantic University, pp. 27-35, 1972.
Bastien, L. "Nombres congruents." Interméd. des Math. 22, 231-232, 1915.
Gérardin, A. "Nombres congruents." Interméd. des Math. 22, 52-53, 1915.
Lagrange, J. "Construction d'une table de nombres congruents." Calculateurs en Math., Bull. Soc. math. France., Mémoire 49-50, 125-130, 1977.
Ore, Ø. Number Theory and Its History. New York: Dover, 1988.
Sloane, N. J. A. Sequences A055096, A057103, A057104, and A057105 in "The On-Line Encyclopedia of Integer Sequences."
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
ندوات وأنشطة قرآنية مختلفة يقيمها المجمَع العلمي في محافظتي النجف وكربلاء
|
|
|