Chi
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Sine and Cosine Integrals." §5.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
6-4-2020
1187
Chi
The hyperbolic cosine integral, often called the "Chi function" for short, is defined by
 |
(1)
|
where
is the Euler-Mascheroni constant. The function is given by the Wolfram Language command CoshIntegral[z].
The Chi function has a unique real root at
(OEIS A133746).
The derivative of
is
 |
(2)
|
and the integral is
 |
(3)
|
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Sine and Cosine Integrals." §5.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 231-233, 1972.
Sloane, N. J. A. Sequence A133746 in "The On-Line Encyclopedia of Integer Sequences."
Referenced on Wolfram|Alpha: Chi
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة