تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Skewes Number
المؤلف:
Asimov, I
المصدر:
"Skewered!" Of Matters Great and Small. New York: Ace Books, 1976.
الجزء والصفحة:
...
21-3-2020
1613
Skewes Number
The Skewes number (or first Skewes number) is the number above which
must fail (assuming that the Riemann hypothesis is true), where
is the prime counting function and
is the logarithmic integral.
Isaac Asimov featured the Skewes number in his science fact article "Skewered!" (1974).
In 1912, Littlewood proved that exists (Hardy 1999, p. 17), and the upper bound
![]() |
was subsequently found by Skewes (1933). The Skewes number has since been reduced to by Lehman in 1966 (Conway and Guy 1996; Derbyshire 2004, p. 237),
by te Riele (1987), and less than
(Bays and Hudson 2000; Granville 2002; Borwein and Bailey 2003, p. 65; Havil 2003, p. 200; Derbyshire 2004, p. 237). The results of Bays and Hudson left open the possibility that the inequality could fail around
, and thus established a large range of violation around
(Derbyshire 2004, p. 237). More recent work by Demichel establishes that the first crossover occurs around
, where the probability that another crossover occurs before this value is infinitesimal and can in fact be dramatically reduced in the suspect regions where there is such a risk and these results are almost certainly the best currently possible (P. Demichel, pers. comm., Aug. 22, 2005).
Rigorously, Rosser and Schoenfeld (1962) proved that there are no crossovers below , and this lower bound was subsequently improved to
by Brent (1975) and to
by Kotnik (2008).
In 1914, Littlewood proved that the inequality must, in fact, fail infinitely often.
The second Skewes number (Skewes 1955) is the number above which
must fail assuming that the Riemann hypothesis is false. It is much larger than the Skewes number
,
![]() |
REFERENCES:
Asimov, I. "Skewered!" Of Matters Great and Small. New York: Ace Books, 1976.
Asimov, I. "Science: Skewered!" Mag. Fantasy Sci. Fiction. Nov. 1974.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 63, 1987.
Bays, C. and Hudson, R. H. "A New Bound for the Smallest with
." Math. Comput. 69, 1285-1296, 2000.
Boas, R. P. "The Skewes Number." In Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., 1979.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 65, 2003.
Brent, R. P. "Irregularities in the Distribution of Primes and Twin Primes." Math. Comput. 29, 43-56, 1975.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 61, 1996.
Crandall, R. and Pomerance, C. Ex. 1.35 in Prime Numbers: A Computational Perspective. New York: Springer-Verlag, 2001.
Demichel, P. "The Prime Counting Function and Related Subjects." http://demichel.net/patrick/li_crossover_pi.pdf.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, p. 236, 2004.
Granville, A. "Prime Possibilities and Quantum Chaos." 2002. http://www.msri.org/ext/Emissary/EmissarySpring02.pdf.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 17 and 21, 1999.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 200 and 209, 2003.
Kotnik, T. "The Prime-counting Function and its Analytic Approximations." Adv. Comput. Math. 29, 55-70, 2008.
Lehman, R. S. "On the Difference ." Acta Arith. 11, 397-410, 1966.
Littlewood, J. E. Littlewood's Miscellany. Cambridge, England: Cambridge University Press, pp. 110-112, 1986.
Rosser, J. B. and Schoenfeld, L. "Approximate Formulas for some Functions of Prime Numbers." Ill. J. Math. 6, 64-94, 1962.
Skewes, S. "On the Difference ." J. London Math. Soc. 8, 277-283, 1933.
Skewes, S. "On the Difference . II." Proc. London Math. Soc. 5, 48-70, 1955.
te Riele, H. J. J. "On the Sign of the Difference ." Math. Comput. 48, 323-328, 1987.
Wagon, S. Mathematica in Action. New York: W. H. Freeman, p. 30, 1991.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
