Read More
Date: 23-9-2020
![]()
Date: 30-10-2019
![]()
Date: 5-3-2020
![]() |
Consider the Lagrange interpolating polynomial
![]() |
(1) |
through the points , where
is the
th prime. For the first few points, the polynomials are
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
So the first few values of ,
,
, ..., are 2, 1, 1/2,
, 1/8,
, ... (OEIS A118210 and A118211).
Now consider the partial sums of these coefficients, namely 2, 3, 7/2, 10/3, 83/24, 203/60, 2459/720, ... (OEIS A118203 and A118204). As first noted by F. Magata in 1998, the sum appears to converge to the value 3.407069... (OEIS A092894), now known as Magata's constant.
REFERENCES:
Sloane, N. J. A. Sequences A092894, A118203, A118204, A118210, and A118210 in "The On-Line Encyclopedia of Integer Sequences."
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|