Read More
Date: 24-1-2020
861
Date: 8-5-2020
866
Date: 26-10-2020
1421
|
Extend Hilbert's inequality by letting and
(1) |
so that
(2) |
Levin (1937) and Stečkin (1949) showed that
(3) |
and
(4) |
Mitrinovic et al. (1991) indicate that this constant is the best possible.
REFERENCES:
Finch, S. R. "Hilbert's Constants." §3.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 216-217, 2003.
Levin, V. I. "On the Two-Parameter Extension and Analogue of Hilbert's Inequality." J. London Math. Soc. 11, 119-124, 1936.
Levin, V. I. "Two Remarks on Hilbert's Double Series Theorem." J. Indian Math. Soc. 11, 111-115, 1937.
Levin, V. I. "Two Remarks on Van Der Corput's Generalisations of Knopp's Inequality." Kon. Akad. van Wetensch. Amsterdam 40, 429-431, 1937.
Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, Netherlands: Kluwer, 1991.
Stečkin, S. B. "On the Degree of Best Approximation to Continuous Functions." Dokl. Akad. Nauk SSSR 65, 135-137, 1949.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|