Read More
Date: 16-1-2021
1471
Date: 30-11-2020
647
Date: 1-12-2019
718
|
Compass and straightedge geometric constructions dating back to Euclid were capable of inscribing regular polygons of 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, ..., sides. In 1796 (when he was 19 years old), Gauss gave a sufficient condition for a regular -gon to be constructible, which he also conjectured (but did not prove) to be necessary, thus showing that regular -gons were constructible for , 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, ... (OEIS A003401).
A complete enumeration of "constructible" polygons is given by those with central angles corresponding to so-called trigonometry angles.
Gardner (1977) and independently Watkins (Conway and Guy 1996, Krížek et al. 2001) noticed that the number of sides for constructible polygons with odd numbers of sides are given by the first 32 rows of the Sierpiński sieve interpreted as binary numbers, giving 1, 3, 5, 15, 17, 51, 85, 255, ... (OEIS A004729, Conway and Guy 1996, p. 140). In other words, every row is a product of distinct Fermat primes, with terms given by binary counting.
REFERENCES:
Bachmann, P. Die Lehre von der Kreistheilung und ihre Beziehungen zur Zahlentheorie. Leipzig, Germany: Teubner, 1872.
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 94-96, 1987.
Bold, B. "The Problem of Constructing Regular Polygons." Ch. 7 in Famous Problems of Geometry and How to Solve Them. New York: Dover, pp. 49-71, 1982.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 190-191, 1996.
Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, 1996.
De Temple, D. W. "Carlyle Circles and the Lemoine Simplicity of Polygonal Constructions." Amer. Math. Monthly 98, 97-108, 1991.
Dickson, L. E. "Constructions with Ruler and Compasses; Regular Polygons." Ch. 8 in Monographs on Topics of Modern Mathematics Relevant to the Elementary Field (Ed. J. W. A. Young). New York: Dover, pp. 352-386, 1955.
Dixon, R. "Compass Drawings." Ch. 1 in Mathographics. New York: Dover, pp. 1-78, 1991.
Gardner, M. "Pascal's Triangle." Ch. 15 in Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles from Scientific American. New York: Vintage Books, pp. 194-207, 1977.
Gauss, C. F. §365 and 366 in Disquisitiones Arithmeticae. Leipzig, Germany, 1801. Reprinted New Haven, CT: Yale University Press, 1965.
Heath, T. L. The Thirteen Books of the Elements, 2nd ed., Vol. 2: Books III-IX. New York: Dover, 1956.
Joyce, D. E. "Euclid's Elements." http://aleph0.clarku.edu/~djoyce/java/elements/elements.html.
Kazarinoff, N. D. "On Who First Proved the Impossibility of Constructing Certain Regular Polygons with Ruler and Compass Alone." Amer. Math. Monthly 75, 647-648, 1968.
Klein, F. "The Division of the Circle into Equal Parts." Part I, Ch. 3 in "Famous Problems of Elementary Geometry: The Duplication of the Cube, the Trisection of the Angle, and the Quadrature of the Circle." In Famous Problems and Other Monographs. New York: Chelsea, pp. 16-23, 1980.
Krížek, M.; Luca, F.; and Somer, L. 17 Lectures on Fermat Numbers: From Number Theory to Geometry. New York: Springer-Verlag, 2001.
Sloane, N. J. A. Sequence A003401/M0505 in "The On-Line Encyclopedia of Integer Sequences."
Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 137-138, 1990.
Wantzel, M. L. "Recherches sur les moyens de reconnaître si un problème de géométrie peut se résoudre avec la règle et le compas." J. Math. pures appliq. 1, 366-372, 1836.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
ضمن أسبوع الإرشاد النفسي.. جامعة العميد تُقيم أنشطةً ثقافية وتطويرية لطلبتها
|
|
|