تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Gauss-Kuzmin-Wirsing Constant
المؤلف:
Babenko, K. I.
المصدر:
"On a Problem of Gauss." Soviet Math. Dokl. 19
الجزء والصفحة:
...
30-1-2020
1851
Gauss-Kuzmin-Wirsing Constant
Wirsing (1974) showed, among other results, that if is the Gauss-Kuzmin distribution, then
![]() |
(1) |
where (OEIS A038517; Knuth 1998, p. 350) and
is an analytic function with
.
was computed to about 30 decimal places by Flajolet and Vallée (1995) and to 100 places by Sebah (unpublished). Briggs (2003) computed
as the negative of the second largest (in absolute value) eigenvalue of the
matrix defined by
![]() |
(2) |
for , where
is a binomial coefficient,
is a Pochhammer symbol, and
is the Riemann zeta function. For example,
![]() |
(3) |
Briggs (2003) used and a precision of 1300 bits to obtain 385 digits.
This constant is connected to the efficiency of the Euclidean algorithm. It has continued fraction [0, 3, 3, 2, 2, 3, 13, 1, 174, ...] (OEIS A007515; Knuth 1998, p. 350).
REFERENCES:
Babenko, K. I. "On a Problem of Gauss." Soviet Math. Dokl. 19, 136-140, 1978.
Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "On the Khintchine Constant." Math. Comput. 66, 417-431, 1997.
Briggs, K. "A Precise Computation of the Gauss-Kuzmin-Wirsing Constant." Preliminary report. 2003 July 8. http://keithbriggs.info/documents/wirsing.pdf.
Daudé, H.; Flajolet, P.; and Vallé, B. "An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction." Combin. Probab. Comput. 6, 397-433, 1997.
Finch, S. R. "Gauss-Kuzmin-Wirsing Constant." §2.17 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 151-156, 2003.
Flajolet, P. and Vallée, B. "On the Gauss-Kuzmin-Wirsing Constant." Unpublished memo. 1995. http://algo.inria.fr/flajolet/Publications/gauss-kuzmin.ps.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, p. 341, 1998.
MacLeod, A. J. "High-Accuracy Numerical Values of the Gauss-Kuzmin Continued Fraction Problem." Computers Math. Appl. 26, 37-44, 1993.
Mayer, D. H. "Continued Fractions and Related Transformations." In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17-28, 1989 (Ed. T. Bedford, M. Keane, and C. Series). New York: Clarendon Press, pp. 175-222, 1991.
Plouffe, S. "The Gauss-Kuzmin-Wirsing Constant." http://pi.lacim.uqam.ca/piDATA/gkw.txt.
Sloane, N. J. A. Sequences A007515/M2267 and A038517 in "The On-Line Encyclopedia of Integer Sequences."
Wirsing, E. "On the Theorem of Gauss-Kuzmin-Lévy and a Frobenius-Type Theorem for Function Spaces." Acta Arith. 24, 507-528, 1974.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
