المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

أنجستروم ، اندرز جوناس
14-10-2015
العوامل والمتغيرات المؤثرة في حركة النقل الحضري - الزيادة السكانية
22-7-2021
استضاءة illumination
6-6-2017
ادخلوا في ولاية علي كافة
2024-09-22
اهتمام النبي (ص) بالمسجد
11-6-2021
رؤيا أبكت فاطمة (عليها السلام)
16-12-2014

Theodorus,s Constant Digits  
  
784   05:30 مساءً   date: 23-1-2020
Author : Beyer, W. A.; Metropolis, N.; and Neergaard, J. R
Book or Source : "Square Roots of Integers 2 to 15 in Various Bases 2 to 10: 88062 Binary Digits or Equivalent." Math. Comput. 23
Page and Part : ...


Read More
Date: 21-3-2020 966
Date: 12-5-2020 1609
Date: 7-12-2020 1026

Theodorus's Constant Digits

 

Theodorus's constant sqrt(3) has decimal expansion

 

 sqrt(3)=1.732050807...

(OEIS A002194). It was computed to 10^(10) decimal digits by E. Weisstein on Jul. 23, 2013.

The Earls sequence (starting position of n copies of the digit n) for e is given for n=1, 2, ... by 27, 215, 1651, 2279, 21640, 176497, 7728291, 77659477, 638679423, ... (OEIS A224874).

sqrt(3)-constant primes occur at 2, 3, 19, 111, 116, 641, 5411, 170657, ... (OEIS A119344) decimal digits.

The starting positions of the first occurrence of n=0, 1, 2, ... in the decimal expansion of sqrt(3) (including the initial 1 and counting it as the first digit) are 5, 1, 4, 3, 23, 6, 12, 2, 8, 18, ... (OEIS A229200).

Scanning the decimal expansion of sqrt(3) until all n-digit numbers have occurred, the last 1-, 2-, ... digit numbers appearing are 4, 91, 184, 5566, 86134, 35343, ... (OEIS A000000), which end at digits 23, 378, 7862, 77437, 1237533, 16362668, ... (OEIS A000000).

The digit sequence 9876543210 does not occur in the first 10^(10) digits of sqrt(3), but 0123456789 does, starting at positions 1104282392, 1879095207, 3037917993, ... (OEIS A000000) (E. Weisstein, Jul. 23, 2013).

It is not known if sqrt(3) is normal (Beyer et al. 1969, 1970ab), but the following table giving the counts of digits in the first 10^n terms shows that the decimal digits are very uniformly distributed up to at least 10^(10).

d
OEIS 10 100 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^(10)
0 A000000 3 15 95 1035 10125 100234 1000172 9995281 99976638 1000006042
1 A000000 0 7 97 996 10019 99587 1001548 10001670 99988551 999978902
2 A000000 1 8 100 994 9829 99812 1000263 10001751 99991487 999982296
3 A000000 1 9 97 945 9898 99818 998943 10000247 100004464 999998469
4 A000000 0 7 84 971 10077 99897 998647 10001384 100023203 1000009144
5 A000000 2 13 93 1009 10037 100260 999993 9995879 99996674 999982506
6 A000000 0 10 103 1027 10052 100558 999976 9999931 100020148 1000025094
7 A000000 2 11 98 991 9921 99921 1000059 10002655 99987934 999997927
8 A000000 1 14 125 1002 9996 100055 1000650 10001042 100017107 1000013674
9 A000000 0 6 108 1030 10046 99858 999749 10000160 99993794 1000005946

REFERENCES:

Beyer, W. A.; Metropolis, N.; and Neergaard, J. R. "Square Roots of Integers 2 to 15 in Various Bases 2 to 10: 88062 Binary Digits or Equivalent." Math. Comput. 23, 679, 1969.

Beyer, W. A.; Metropolis, N.; and Neergaard, J. R. "Statistical Study of Digits of Some Square Roots of Integers in Various Bases." Math. Comput. 24, 455-473, 1970a.

Beyer, W. A.; Metropolis, N.; and Neergaard, J. R. "The Generalized Serial Test Applied to Expansions of Some Irrational Square Roots in Various Bases." Math. Comput. 24, 745-747, 1970b.

Sloane, N. J. A. Sequences A002194/M4326, A119344, A224874, A229200 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.