 
					
					
						Cantor Set					
				 
				
					
						 المؤلف:  
						Boas, R. P. Jr
						 المؤلف:  
						Boas, R. P. Jr					
					
						 المصدر:  
						A Primer of Real Functions. Washington, DC: Amer. Math. Soc., 1996
						 المصدر:  
						A Primer of Real Functions. Washington, DC: Amer. Math. Soc., 1996					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 26-12-2019
						26-12-2019
					
					
						 2793
						2793					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Cantor Set
 
The Cantor set  , sometimes also called the Cantor comb or no middle third set (Cullen 1968, pp. 78-81), is given by taking the interval
, sometimes also called the Cantor comb or no middle third set (Cullen 1968, pp. 78-81), is given by taking the interval ![[0,1]](http://mathworld.wolfram.com/images/equations/CantorSet/Inline2.gif) (set
 (set  ), removing the open middle third (
), removing the open middle third ( ), removing the middle third of each of the two remaining pieces (
), removing the middle third of each of the two remaining pieces ( ), and continuing this procedure ad infinitum. It is therefore the set of points in the interval
), and continuing this procedure ad infinitum. It is therefore the set of points in the interval ![[0,1]](http://mathworld.wolfram.com/images/equations/CantorSet/Inline6.gif) whose ternary expansions do not contain 1, illustrated above.
 whose ternary expansions do not contain 1, illustrated above.
The  th iteration of the Cantor is implemented in the Wolfram Language as CantorMesh[n].
th iteration of the Cantor is implemented in the Wolfram Language as CantorMesh[n].
Iterating the process 1 -> 101, 0 -> 000 starting with 1 gives the sequence 1, 101, 101000101, 101000101000000000101000101, .... The sequence of binary bits thus produced is therefore 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, ... (OEIS A088917) whose  th term is amazingly given by
th term is amazingly given by  (mod 3), where
 (mod 3), where  is a (central) Delannoy number and
 is a (central) Delannoy number and  is a Legendre polynomial (E. W. Weisstein, Apr. 9, 2006). The recurrence plot for this sequence is illustrated above.
 is a Legendre polynomial (E. W. Weisstein, Apr. 9, 2006). The recurrence plot for this sequence is illustrated above.
This produces the set of real numbers ![<span style=]() {x}" src="http://mathworld.wolfram.com/images/equations/CantorSet/Inline12.gif" style="height:15px; width:17px" /> such that
{x}" src="http://mathworld.wolfram.com/images/equations/CantorSet/Inline12.gif" style="height:15px; width:17px" /> such that
	
		
			|  | (1) | 
	
where  may equal 0 or 2 for each
 may equal 0 or 2 for each  . This is an infinite, perfect set. The total length of the line segments in the
. This is an infinite, perfect set. The total length of the line segments in the  th iteration is
th iteration is
	
		
			|  | (2) | 
	
and the number of line segments is  , so the length of each element is
, so the length of each element is
	
		
			|  | (3) | 
	
and the capacity dimension is
(OEIS A102525). The Cantor set is nowhere dense, and has Lebesgue measure 0.
A general Cantor set is a closed set consisting entirely of boundary points. Such sets are uncountable and may have 0 or positive Lebesgue measure. The Cantor set is the only totally disconnected, perfect, compact metric space up to a homeomorphism (Willard 1970).
REFERENCES:
Boas, R. P. Jr. A Primer of Real Functions. Washington, DC: Amer. Math. Soc., 1996.
Cullen, H. F. Introduction to General Topology. Boston, MA: Heath, pp. 78-81, 1968.
Gleick, J. Chaos: Making a New Science. New York: Penguin Books, p. 93, 1988.
Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 15-20, 1991.
Harris, J. W. and Stocker, H. "Cantor Set." §4.11.4 in Handbook of Mathematics and Computational Science. New York: Springer-Verlag, p. 114, 1998.
Sloane, N. J. A. Sequence A102525 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. The Mathematica GuideBook for Graphics. New York: Springer-Verlag, pp. 9-13, 2004. http://www.mathematicaguidebooks.org/.
Willard, S. §30.4 in General Topology. Reading, MA: Addison-Wesley, 1970.
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة