المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Modular Form  
  
1077   05:11 مساءً   date: 24-12-2019
Author : Apostol, T. M
Book or Source : "Modular Forms with Multiplicative Coefficients." Ch. 6 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
Page and Part : ...


Read More
Date: 17-11-2019 843
Date: 28-8-2020 785
Date: 4-1-2021 695

Modular Form

A function f is said to be an entire modular form of weight k if it satisfies

1. f is analytic in the upper half-plane H,

2. f((atau+b)/(ctau+d))=(ctau+d)^kf(tau) whenever [a b; c d] is a member of the modular group Gamma,

3. The Fourier series of f has the form

 f(tau)=sum_(n=0)^inftyc(n)e^(2piintau)

(1)

Care must be taken when consulting the literature because some authors use the term "dimension -k" or "degree -k" instead of "weight k," and others write 2k instead of k (Apostol 1997, pp. 114-115). More general types of modular forms (which are not "entire") can also be defined which allow poles in H or at iinfty. Since Klein's absolute invariant J, which is a modular function, has a pole at iinfty, it is a nonentire modular form of weight 0.

The set of all entire forms of weight k is denoted M_k, which is a linear space over the complex field. The dimension of M_k is 1 for k=4, 6, 8, 10, and 14 (Apostol 1997, p. 119).

c(0) is the value of f at iinfty, and if c(0)=0, the function is called a cusp form. The smallest r such that c(r)!=0 is called the order of the zero of f at iinfty. An estimate for c(n) states that

 c(n)=O(n^(2k-1))

(2)

if f in M_(2k) and is not a cusp form (Apostol 1997, p. 135).

If f!=0 is an entire modular form of weight k, let f have N zeros in the closure of the fundamental region R_Gamma (omitting the vertices). Then

 k=12N+6N(i)+4N(rho)+12N(iinfty),

(3)

where N(p) is the order of the zero at a point p (Apostol 1997, p. 115). In addition,

1. The only entire modular forms of weight k=0 are the constant functions.

2. If k is odd, k<0, or k=2, then the only entire modular form of weight k is the zero function.

3. Every nonconstant entire modular form has weight k>=4, where k is even.

4. The only entire cusp form of weight k<12 is the zero function.

(Apostol 1997, p. 116).

For f an entire modular form of even weight k>=0, define E_0(tau)=1 for all tau. Then f can be expressed in exactly one way as a sum

 f=sum_(r=0; k-12r!=2)^(|_k/12_|)a_rE_(k-12r)Delta^r,

(4)

where a_r are complex numbers, E_n is an Eisenstein series, and Delta is the modular discriminant of the Weierstrass elliptic function. cusp forms of even weight k are then those sums for which a_0=0 (Apostol 1997, pp. 117-118). Even more amazingly, every entire modular form f of weight k is a polynomial in E_4 and E_6 given by

 f=sum_(a,b)c_(a,b)E_4^aE_6^b,

(5)

where the c_(a,b) are complex numbers and the sum is extended over all integers a,b>=0 such that 4a+6b=k (Apostol 1998, p. 118).

Modular forms satisfy rather spectacular and special properties resulting from their surprising array of internal symmetries. Hecke discovered an amazing connection between each modular form and a corresponding Dirichlet L-series. A remarkable connection between rational elliptic curves and modular forms is given by the Taniyama-Shimura conjecture, which states that any rational elliptic curve is a modular form in disguise. This result was the one proved by Andrew Wiles in his celebrated proof of Fermat's last theorem.


REFERENCES:

Apostol, T. M. "Modular Forms with Multiplicative Coefficients." Ch. 6 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 113-141, 1997.

Hecke, E. "Über Modulfunktionen und die Dirichlet Reihen mit Eulerscher Produktentwicklungen. I." Math. Ann. 114, 1-28, 1937.

Knopp, M. I. Modular Functions in Analytic Number Theory. New York: Chelsea, 1993.

Koblitz, N. Introduction to Elliptic Curves and Modular Forms. New York: Springer-Verlag, 1993.

Rankin, R. A. Modular Forms and Functions. Cambridge, England: Cambridge University Press, 1977.

Sarnack, P. Some Applications of Modular Forms. Cambridge, England: Cambridge University Press, 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.