Read More
Date: 5-1-2021
862
Date: 2-5-2020
1332
Date: 24-10-2019
666
|
Let and be periods of a doubly periodic function, with the half-period ratio a number with . Then Klein's absolute invariant (also called Klein's modular function) is defined as
(1) |
where and are the invariants of the Weierstrass elliptic function with modular discriminant
(2) |
(Klein 1877). If , where is the upper half-plane, then
(3) |
is a function of the ratio only, as are , , and . Furthermore, , , , and are analytic in (Apostol 1997, p. 15).
Klein's absolute invariant is implemented in the Wolfram Language as KleinInvariantJ[tau].
The function is the same as the j-function, modulo a constant multiplicative factor.
Every rational function of is a modular function, and every modular function can be expressed as a rational function of (Apostol 1997, p. 40).
Klein's invariant can be given explicitly by
(4) |
|||
(5) |
(Klein 1878-1879, Cohn 1994), where is the elliptic lambda function
(6) |
is a Jacobi theta function, the are Eisenstein series, and is the nome. Klein's invariant can also be simply expressed in terms of the five Weber functions , , , , and .
is invariant under a unimodular transformation, so
(7) |
and is a modular function. takes on the special values
(8) |
|||
(9) |
|||
(10) |
satisfies the functional equations
(11) |
|||
(12) |
It satisfies a number of beautiful multiple-argument identities, including the duplication formula
(13) |
|||
(14) |
with
(15) |
|||
(16) |
and the Dedekind eta function, the triplication formula
(17) |
|||
(18) |
with
(19) |
|||
(20) |
and the quintuplication formula
(21) |
|||
(22) |
with
(23) |
|||
(24) |
Plotting the real or imaginary part of in the complex plane produces a beautiful fractal-like structure, illustrated above.
REFERENCES:
Apostol, T. M. "Klein's Modular Function ," "Invariance of Under Unimodular Transformation," "The Fourier Expansions of and ," "Special Values of ," and "Modular Functions as Rational Functions of ." §1.12-1.13, 1.15, and 2.5-2.6 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 15-18, 20-22, and 39-40, 1997.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 115 and 179, 1987.
Cohn, H. Introduction to the Construction of Class Fields. New York: Dover, p. 73, 1994.
Klein, F. "Sull' equazioni dell' Icosaedro nella risoluzione delle equazioni del quinto grado [per funzioni ellittiche]." Reale Istituto Lombardo, Rendiconto, Ser. 2 10, 1877.
Klein, F. "Über die Transformation der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades." Math. Ann. 14, 111-172, 1878-1879.
Nesterenko, Yu. V. A Course on Algebraic Independence: Lectures at IHP 1999. Unpublished manuscript. 1999.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|