تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Ring of Fractions
المؤلف:
Atiyah, M. F. and Macdonald, I. G
المصدر:
Introduction to Commutative Algebra. Menlo Park, CA: Addison-Wesley, 1969.
الجزء والصفحة:
...
11-11-2019
943
Ring of Fractions
The extension ring obtained from a commutative unit ring (other than the trivial ring) when allowing division by all non-zero divisors. The ring of fractions of an integral domain is always a field.
The term "ring of fractions" is sometimes used to denote any localization of a ring. The ring of fractions in the above meaning is then referred to as the total ring of fractions, and coincides with the localization with respect to the set of all non-zero divisors.
When defining addition and multiplication of fractions, all that is required of the denominators is that they be multiplicatively closed, i.e., if , then
,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
Given a multiplicatively closed set in a ring
, the ring of fractions is all elements of the form
with
and
. Of course, it is required that
and that fractions of the form
and
be considered equivalent. With the above definitions of addition and multiplication, this set forms a ring.
The original ring may not embed in this ring of fractions if it is not an integral domain. For instance, if
for some
, then
in the ring of fractions.
When the complement of is an ideal
, it must be a prime ideal because
is multiplicatively closed. In this case, the ring of fractions is the localization at
.
When the ring is an integral domain, then the nonzero elements are multiplicatively closed. Letting be the nonzero elements, then the ring of fractions is a field called the field of fractions, or the total ring of fractions. In this case one can also use the usual rule for division of fractions, which is not normally available for more general
.
REFERENCES:
Atiyah, M. F. and Macdonald, I. G. Introduction to Commutative Algebra. Menlo Park, CA: Addison-Wesley, 1969.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
