 
					
					
						Global Field					
				 
				
					
						 المؤلف:  
						المرجع الالكتروني للمعلوماتيه
						 المؤلف:  
						المرجع الالكتروني للمعلوماتيه					
					
						 المصدر:  
						المرجع الالكتروني للمعلوماتيه
						 المصدر:  
						المرجع الالكتروني للمعلوماتيه					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 17-10-2019
						17-10-2019
					
					
						 1155
						1155					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Global Field
A global field is either a number field, a function field on an algebraic curve, or an extension of transcendence degree one over a finite field. From a modern point of view, a global field may refer to a function field on a complex algebraic curve as well as one over a finite field. A global field contains a canonical subring, either the algebraic integers or the polynomials. By choosing a prime ideal in its subring, a global field can be topologically completed to give a local field. For example, the rational numbers are a global field. By choosing a prime number  , the rationals can be completed in the p-adic norm to form the p-adic numbers
, the rationals can be completed in the p-adic norm to form the p-adic numbers  .
.
A global field is called global because of the special case of a complex algebraic curve, for which the field consists of global functions (i.e., functions that are defined everywhere). These functions differ from functions defined near a point, whose completion is called a local field. Under favorable conditions, the local information can be patched together to yield global information (e.g., the Hasse principle).
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة