تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Square Root
المؤلف:
Landau, S.
المصدر:
"Simplification of Nested Radicals." SIAM J. Comput. 21
الجزء والصفحة:
...
4-9-2019
2033
Square Root
![]() |
A square root of is a number
such that
. When written in the form
or especially
, the square root of
may also be called the radical or surd. The square root is therefore an nth root with
.
Note that any positive real number has two square roots, one positive and one negative. For example, the square roots of 9 are and
, since
. Any nonnegative real number
has a unique nonnegative square root
; this is called the principal square root and is written
or
. For example, the principal square root of 9 is
, while the other square root of 9 is
. In common usage, unless otherwise specified, "the" square root is generally taken to mean the principal square root. The principal square root function
is the inverse function of
for
.
![]() |
Any nonzero complex number also has two square roots. For example, using the imaginary unit i, the two square roots of
are
. The principal square root of a number
is denoted
(as in the positive real case) and is returned by the Wolfram Language function Sqrt[z].
When considering a positive real number , the Wolfram Language function Surd[x, 2] may be used to return the real square root.
The square roots of a complex number are given by
(1) |
In addition,
![]() |
(2) |
As can be seen in the above figure, the imaginary part of the complex square root function has a branch cut along the negative real axis.
There are a number of square root algorithms that can be used to approximate the square root of a given (positive real) number. These include the Bhaskara-Brouncker algorithm and Wolfram's iteration. The simplest algorithm for is Newton's iteration:
![]() |
(3) |
with .
The square root of 2 is the irrational number (OEIS A002193) sometimes known as Pythagoras's constant, which has the simple periodic continued fraction [1, 2, 2, 2, 2, 2, ...] (OEIS A040000). The square root of 3 is the irrational number
(OEIS A002194), sometimes known as Theodorus's constant, which has the simple periodic continued fraction [1, 1, 2, 1, 2, 1, 2, ...] (OEIS A040001). In general, the continued fractions of the square roots of all positive integers are periodic.
A nested radical of the form can sometimes be simplified into a simple square root by equating
![]() |
(4) |
Squaring gives
![]() |
(5) |
so
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
Solving for and
gives
![]() |
(8) |
For example,
![]() |
(9) |
![]() |
(10) |
The Simplify command of the Wolfram Language does not apply such simplifications, but FullSimplify does. In general, radical denesting is a difficult problem (Landau 1992ab, 1994, 1998).
A counterintuitive property of inverse functions is that
(11) |
so the expected identity (i.e., canceling of the s) does not hold along the negative real axis.
REFERENCES:
Landau, S. "A Note on 'Zippel Denesting.' " J. Symb. Comput. 13, 31-45, 1992a.
Landau, S. "Simplification of Nested Radicals." SIAM J. Comput. 21, 85-110, 1992b.
Landau, S. "How to Tangle with a Nested Radical." Math. Intell. 16, 49-55, 1994.
Landau, S. ": Four Different Views." Math. Intell. 20, 55-60, 1998.
Sloane, N. J. A. Sequences A002193/M3195, A002194/M4326, A040000, and A040001 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Square-Root Function and Its Reciprocal," "The
Function and Its Reciprocal," and "The
Function." Chs. 12, 14, and 15 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 91-99, 107-115, and 115-122, 1987.
Williams, H. C. "A Numerical Investigation into the Length of the Period of the Continued Fraction Expansion of ." Math. Comput. 36, 593-601, 1981.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
