Square Root					
				 
				
					
						
						 المؤلف:  
						Landau, S.					
					
						
						 المصدر:  
						"Simplification of Nested Radicals." SIAM J. Comput. 21					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						4-9-2019
					
					
						
						2184					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Square Root
 
A square root of 
 is a number 
 such that 
. When written in the form 
 or especially 
, the square root of 
may also be called the radical or surd. The square root is therefore an nth root with 
.
Note that any positive real number has two square roots, one positive and one negative. For example, the square roots of 9 are 
 and 
, since 
. Any nonnegative real number 
 has a unique nonnegative square root 
; this is called the principal square root and is written 
 or 
. For example, the principal square root of 9 is 
, while the other square root of 9 is 
. In common usage, unless otherwise specified, "the" square root is generally taken to mean the principal square root. The principal square root function 
is the inverse function of 
 for 
.
Any nonzero complex number 
 also has two square roots. For example, using the imaginary unit i, the two square roots of 
 are 
. The principal square root of a number 
 is denoted 
 (as in the positive real case) and is returned by the Wolfram Language function Sqrt[z].
When considering a positive real number 
, the Wolfram Language function Surd[x, 2] may be used to return the real square root.
The square roots of a complex number 
 are given by
	
		
			 {cos[1/2tan^(-1)(x,y)]+isin[1/2tan^(-1)(x,y)]}.   " src="http://mathworld.wolfram.com/images/equations/SquareRoot/NumberedEquation1.gif" style="height:36px; width:406px" /> | 
			
			 (1) 
			 | 
		
	
In addition,
	
		
			![sqrt(x+iy)=1/2sqrt(2)[sqrt(sqrt(x^2+y^2)+x)+isgn(y)sqrt(sqrt(x^2+y^2)-x)].](http://mathworld.wolfram.com/images/equations/SquareRoot/NumberedEquation2.gif)  | 
			
			 (2) 
			 | 
		
	
As can be seen in the above figure, the imaginary part of the complex square root function has a branch cut along the negative real axis.
There are a number of square root algorithms that can be used to approximate the square root of a given (positive real) number. These include the Bhaskara-Brouncker algorithm and Wolfram's iteration. The simplest algorithm for 
 is Newton's iteration:
	
		
			  | 
			
			 (3) 
			 | 
		
	
with 
.
The square root of 2 is the irrational number 
 (OEIS A002193) sometimes known as Pythagoras's constant, which has the simple periodic continued fraction [1, 2, 2, 2, 2, 2, ...] (OEIS A040000). The square root of 3 is the irrational number 
 (OEIS A002194), sometimes known as Theodorus's constant, which has the simple periodic continued fraction [1, 1, 2, 1, 2, 1, 2, ...] (OEIS A040001). In general, the continued fractions of the square roots of all positive integers are periodic.
A nested radical of the form 
 can sometimes be simplified into a simple square root by equating
	
		
			  | 
			
			 (4) 
			 | 
		
	
Squaring gives
	
		
			  | 
			
			 (5) 
			 | 
		
	
so
Solving for 
 and 
 gives
	
		
			  | 
			
			 (8) 
			 | 
		
	
For example,
	
		
			  | 
			
			 (9) 
			 | 
		
	
	
		
			  | 
			
			 (10) 
			 | 
		
	
The Simplify command of the Wolfram Language does not apply such simplifications, but FullSimplify does. In general, radical denesting is a difficult problem (Landau 1992ab, 1994, 1998).
A counterintuitive property of inverse functions is that
	
		
			 {-1   for I[z]=0 and R[z]<0; undefined   for z=0; 1   otherwise, " src="http://mathworld.wolfram.com/images/equations/SquareRoot/NumberedEquation9.gif" style="height:62px; width:302px" /> | 
			
			 (11) 
			 | 
		
	
so the expected identity (i.e., canceling of the 
s) does not hold along the negative real axis.
REFERENCES:
Landau, S. "A Note on 'Zippel Denesting.' " J. Symb. Comput. 13, 31-45, 1992a.
Landau, S. "Simplification of Nested Radicals." SIAM J. Comput. 21, 85-110, 1992b.
Landau, S. "How to Tangle with a Nested Radical." Math. Intell. 16, 49-55, 1994.
Landau, S. "
: Four Different Views." Math. Intell. 20, 55-60, 1998.
Sloane, N. J. A. Sequences A002193/M3195, A002194/M4326, A040000, and A040001 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Square-Root Function 
 and Its Reciprocal," "The 
 Function and Its Reciprocal," and "The 
 Function." Chs. 12, 14, and 15 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 91-99, 107-115, and 115-122, 1987.
Williams, H. C. "A Numerical Investigation into the Length of the Period of the Continued Fraction Expansion of 
." Math. Comput. 36, 593-601, 1981.
				
				
					
					
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة