Read More
Date: 12-10-2018
3134
Date: 23-8-2018
1781
Date: 24-3-2019
1671
|
Given a number , the cube root of , denoted or ( to the 1/3 power), is a number such that . The cube root is therefore an nth root with . Every real number has a unique real cube root, and every nonzero complex number has three distinct cube roots.
The schoolbook definition of the cube root of a negative number is . However, extension of the cube root into the complex plane gives a branch cut along the negative real axis for the principal value of the cube root as illustrated above. By convention, "the" (principal) cube root is therefore a complex number with positive imaginary part. As a result, the Wolfram Language and other symbolic algebra languages and programs that return results valid over the entire complex plane therefore return complex results for . For example, in the Wolfram Language, ComplexExpand[(-1)^(1/3)] gives the result .
When considering a positive real number , the Wolfram Language function CubeRoot[x], which is equivalent to Surd[x, 3], may be used to return the real cube root.
The cube root of a number can be computed using Newton's method by iteratively applying
for some real starting value .
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|