المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مناخ المرتفعات Height Climate
2024-11-28
التربة المناسبة لزراعة البطاطس Solanum tuberosum
2024-11-28
مدى الرؤية Visibility
2024-11-28
Stratification
2024-11-28
استخدامات الطاقة الشمسية Uses of Solar Radiation
2024-11-28
Integration of phonology and morphology
2024-11-28


An Explanation of Substituent Effects  
  
946   01:04 صباحاً   date: 28-8-2019
Author : ..................
Book or Source : LibreTexts Project
Page and Part : .................


Read More
Date: 5-8-2018 1164
Date: 29-5-2017 5399
Date: 23-6-2016 2100

An Explanation of Substituent Effects

Of the four possible combinations, only three are known—there are no meta directing activators.

If you look at the data for the nitration of toluene, you will see that the yield of o‑nitrotoluene is 63% and that of p‑nitrotoluene is 34%. Statistically, we should expect to obtain twice as much ortho product as para product, because the former is produced by attack at either of two carbon atoms whereas the latter is produced by attack at only one carbon atom (see Figure 1.1, below).

ortho and para sites identified on a toluene ring

Figure 1.1: Proportions of o‑nitrotoluene and p‑nitrotoluene produced by the nitration of toluene

In this instance, the observed ortho/para ratio is almost 2:1, as we might expect. However, if we study the ortho/para ratio found in the nitration of a number of other arenes, we see that this is not always the case. Note that the data for the nitration of toluene given in the table below differ from those presented elsewhere. The variation may result from a difference in temperature, reaction conditions or reagent, and emphasizes the point that it is the trends which are important, not the numbers themselves.

Substrate % ortho % para ortho/para ratio
toluene 58 37 1.57:1
ethylbenzene 45 49 0.92:1
isopropylbenzene 30 62 0.48:1
tert-butylbenzene 1 73 0.22:1

[Source: These data were taken from the audiocassette Some Organic Reaction Pathways, by Peter Sykes. London: Educational Techniques Subject Group, The Chemical Society, 1975.]

Table 1.1: Nitration of arenes

The table above shows us that as the size of the alkyl substituent already present in the ring increases, attack at the ortho position becomes more difficult, and the percentage of ortho isomers in the mixture of products decreases. This is an example of a steric effect—an effect caused by the size of the substituent—and we would say that as the size of the alkyl group increases, attack at the ortho position becomes less favourable as a result of steric hindrance. Note that the size of the electrophile can also be a factor in determining the ortho/para ratio: the larger the electrophile, the less able it is to attack at the ortho position, particularly if the substituent already present in the ring is itself quite bulky.

When drawing the resonance contributors to the carbocation formed during an electrophilic aromatic substitution, bear in mind that those of the type

carbocation resonance form with positive charge on oxygen of ring hydroxide

are particularly important, because in such structures each atom possesses a complete octet of electrons.

Note that, as do the hydroxyl and amino groups, the halogens have an inductive electron-withdrawing effect and a resonance electron-releasing effect on a benzene ring. The difference in behaviour during electrophilic substitutions arises because, with the hydroxyl and amino groups, the resonance effect completely swamps the inductive effect, whereas with the halogens, there is a much finer balance. In the case of the latter, the inductive effect reduces the overall reactivity, but the resonance effect means that this reduction is felt less at the ortho and para positions than at the meta position.

Substituted rings are divided into two groups based on the type of the substituent that the ring carries:

  • Activated rings: the substituents on the ring are groups that donate electrons.
  • Deactivated rings: the substituents on the ring are groups that withdraw electrons.

Introduction

Examples of activating groups in the relative order from the most activating group to the least activating:

-NH2, -NR2 > -OH, -OR> -NHCOR> -CH3 and other alkyl groups

with R as alkyl groups (CnH2n+1)

Examples of deactivating groups in the relative order from the most deactivating to the least deactivating:

-NO2, -CF3> -COR, -CN, -CO2R, -SO3H > Halogens

with R as alkyl groups (CnH2n+1)

The order of reactivity among Halogens from the more reactive (least deactivating substituent) to the least reactive (most deactivating substituent) halogen is:

F> Cl > Br > I

The order of reactivity of the benzene rings toward the electrophilic substitution when it is substituted with a halogen groups, follows the order of electronegativity. The ring that is substituted with the most electronegative halogen is the most reactive ring ( less deactivating substituent ) and the ring that is substituted with the least electronegatvie halogen is the least reactive ring ( more deactivating substituent ), when we compare rings with halogen substituents. Also the size of the halogen effects the reactivity of the benzene ring that the halogen is attached to. As the size of the halogen increase, the reactivity of the ring decreases.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .