Andrews-Schur Identity
المؤلف:
Andrews, G. E.
المصدر:
"A Polynomial Identity which Implies the Rogers-Ramanujan Identities." Scripta Math. 28
الجزء والصفحة:
...
21-8-2019
2020
Andrews-Schur Identity
The Andrews-Schur identity states
![sum_(k=0)^nq^(k^2+ak)[2n-k+a; k]_q
=sum_(k=-infty)^inftyq^(10k^2+(4a-1)k)[2n+2a+2; n-5k]_q([10k+2a+2]_q)/([2n+2a+2]_q)](http://mathworld.wolfram.com/images/equations/Andrews-SchurIdentity/NumberedEquation1.gif) |
(1)
|
where
is a q-binomial coefficient and
is a q-bracket. It is a polynomial identity for
, 1 which implies the Rogers-Ramanujan identities by taking
and applying the Jacobi triple product identity.
The limit as
of the identity in (1) is
 |
(2)
|
A variant of the identity is
![sum_(k=-|_a/2_|)^nq^(k^2+2ak)[n+k+a; n-k]_q
=sum_(-|_(n+2a+2)/5_|)^(|_n/5_|)q^(15k^2+(6a+1)k)[2n+2a+2; n-5k]_q([10k+2a+2]_q)/([2n+2a+2]_q),](http://mathworld.wolfram.com/images/equations/Andrews-SchurIdentity/NumberedEquation3.gif) |
(3)
|
where the symbol
in the sum limits is the floor function (Paule 1994). A related identity is given by
 |
(4)
|
for
, 1 (Paule 1994). For
, equation (3) becomes
 |
(5)
|
REFERENCES:
Andrews, G. E. "A Polynomial Identity which Implies the Rogers-Ramanujan Identities." Scripta Math. 28, 297-305, 1970.
Paule, P. "Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type." Electronic J. Combinatorics 1, No. 1, R10, 1-9, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r10.html.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة