Read More
Date: 25-5-2019
1277
Date: 25-4-2018
1767
Date: 19-8-2019
1626
|
A pair of closed form functions is said to be a Wilf-Zeilberger pair if
(1) |
The Wilf-Zeilberger formalism provides succinct proofs of known identities and allows new identities to be discovered whenever it succeeds in finding a proof certificate for a known identity. However, if the starting point is an unknown hypergeometric sum, then the Wilf-Zeilberger method cannot discover a closed form solution, while Zeilberger's algorithm can.
Wilf-Zeilberger pairs are very useful in proving hypergeometric identities of the form
(2) |
for which the addend vanishes for all outside some finite interval. Now divide by the right-hand side to obtain
(3) |
where
(4) |
Now use a rational function provided by Zeilberger's algorithm, define
(5) |
The identity (◇) then results. Summing the relation over all integers then telescopes the right side to 0, giving
(6) |
Therefore, is independent of , and so must be a constant. If is properly normalized, then it will be true that .
For example, consider the binomial coefficient identity
(7) |
the function returned by Zeilberger's algorithm is
(8) |
Therefore,
(9) |
and
(10) |
|||
(11) |
|||
(12) |
|||
(13) |
Taking
(14) |
then gives the alleged identity
(15) |
Expanding and evaluating shows that the identity does actually hold, and it can also be verified that
(16) |
so (Petkovšek et al. 1996, pp. 25-27).
For any Wilf-Zeilberger pair ,
(17) |
whenever either side converges (Zeilberger 1993). In addition,
(18) |
(19) |
and
(20) |
where
(21) |
|||
(22) |
(Amdeberhan and Zeilberger 1997). The latter identity has been used to compute Apéry's constant to a large number of decimal places (Wedeniwski).
REFERENCES:
Amdeberhan, T. and Zeilberger, D. "Hypergeometric Series Acceleration via the WZ Method." Electronic J. Combinatorics 4, No. 2, R3, 1-3, 1997. http://www.combinatorics.org/Volume_4/Abstracts/v4i2r3.html. Also available at http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/accel.html.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. "The Wilf-Zeilberger Algorithm." §3.1 in Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 53-55, 2007.
Cipra, B. A. "How the Grinch Stole Mathematics." Science 245, 595, 1989.
Koepf, W. "Algorithms for -fold Hypergeometric Summation." J. Symb. Comput. 20, 399-417, 1995.
Koepf, W. "The Wilf-Zeilberger Method." Ch. 6 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 80-92, 1998.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. "The WZ Phenomenon." Ch. 7 in A=B. Wellesley, MA: A K Peters, pp. 121-140, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Wedeniwski, S. " Digits of Zeta(3)." http://pi.lacim.uqam.ca/eng/records_en.html.
Wilf, H. S. and Zeilberger, D. "Rational Functions Certify Combinatorial Identities." J. Amer. Math. Soc. 3, 147-158, 1990.
Zeilberger, D. "The Method of Creative Telescoping." J. Symb. Comput. 11, 195-204, 1991.
Zeilberger, D. "Closed Form (Pun Intended!)." Contemporary Math. 143, 579-607, 1993.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
ندوات وأنشطة قرآنية مختلفة يقيمها المجمَع العلمي في محافظتي النجف وكربلاء
|
|
|