Whipple,s Transformation					
				 
				
					
						
						 المؤلف:  
						Andrews, G. E. and Burge, W. H.					
					
						
						 المصدر:  
						"Determinant Identities." Pacific J. Math. 158					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						20-6-2019
					
					
						
						1777					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Whipple's Transformation
(Bailey 1935, p. 25), where 
 and 
 are generalized hypergeometric functions with argument 
 and 
 is the gamma function.
Another transformation due to Whipple (1926ab) is given by
for one of 
 and 
 a nonnegative integer (Andrews and Burge 1993).
REFERENCES:
Andrews, G. E. and Burge, W. H. "Determinant Identities." Pacific J. Math. 158, 1-14, 1993.
Bailey, W. N. Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 25 and 29, 1935.
Whipple, F. J. W. "On Well-Poised Series, Generalized Hypergeometric Series Having Parameters in Pairs, Each Pair with the Same Sum." Proc. London Math. Soc. 24, 247-263, 1926a.
Whipple, F. J. W. "Well-Poised Series and Other Generalized Hypergeometric Series." Proc. London Math. Soc. Ser. 2 25, 525-544, 1926b.
Whipple, F. J. W. "A Fundamental Relation Between Generalized Hypergeometric Series." Proc. London Math. Soc. 26, 257-272, 1927.
				
				
					
					
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة