 
					
					
						Saalschütz,s Theorem					
				 
				
					
						 المؤلف:  
						Hardy, G. H.
						 المؤلف:  
						Hardy, G. H.					
					
						 المصدر:  
						Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea,
						 المصدر:  
						Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 18-6-2019
						18-6-2019
					
					
						 2203
						2203					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Saalschütz's Theorem
	
		
			| ![_3F_2[-x,-y,-z; n+1,-x-y-z]=(Gamma(n+1)Gamma(x+y+n+1))/(Gamma(x+n+1)Gamma(y+n+1)) 
 ×(Gamma(y+z+n+1)Gamma(z+x+n+1))/(Gamma(z+n+1)Gamma(x+y+z+n+1)),](http://mathworld.wolfram.com/images/equations/SaalschuetzsTheorem/NumberedEquation1.gif) | (1) | 
	
where  is a generalized hypergeometric function and
 is a generalized hypergeometric function and  is the gamma function. It can be derived from the Dougall-Ramanujan identity and written in the symmetric form
 is the gamma function. It can be derived from the Dougall-Ramanujan identity and written in the symmetric form
	
		
			|  | (2) | 
	
for
	
		
			|  | (3) | 
	
with  a nonpositive integer and
 a nonpositive integer and  the Pochhammer symbol (Bailey 1935, p. 9; Petkovšek et al. 1996; Koepf 1998, p. 32). If one of
 the Pochhammer symbol (Bailey 1935, p. 9; Petkovšek et al. 1996; Koepf 1998, p. 32). If one of  ,
,  , and
, and  is nonpositive but it is not known which, an alternative formulation due to W. Gosper (pers. comm.) gives the form
 is nonpositive but it is not known which, an alternative formulation due to W. Gosper (pers. comm.) gives the form
	
		
			|  | (4) | 
	
which is symmetric in  and
 and  .
.
If instead
	
		
			|  | (5) | 
	
then
	
		
			|  | (6) | 
	
(W. Gosper, pers. comm.).
REFERENCES:
Bailey, W. N. "Saalschütz's Theorem." §2.2 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 9, 1935.
Dougall, J. "On Vandermonde's Theorem and Some More General Expansions." Proc. Edinburgh Math. Soc. 25, 114-132, 1907.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 104, 1999.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 43 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Saalschütz, L. "Eine Summationsformel." Z. für Math. u. Phys. 35, 186-188, 1890.
Saalschütz, L. "Über einen Spezialfall der hypergeometrischen Reihe dritter Ordnung." Z. für Math. u. Phys. 36, 278-295 and 321-327, 1891.
Shepard, W. F. "Summation of the Coefficients of Some Terminating Hypergeometric Series." Proc. London Math. Soc. 10, 469-478, 1912.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة