Read More
Date: 11-6-2019
![]()
Date: 19-5-2019
![]()
Date: 12-10-2018
![]() |
A special function mostly commonly denoted ,
, or
which is given by the
st derivative of the logarithm of the gamma function
(or, depending on the definition, of the factorial
). This is equivalent to the
th normal derivative of the logarithmic derivative of
(or
) and, in the former case, to the
th normal derivative of the digamma function
. Because of this ambiguity in definition, two different notations are sometimes (but not always) used, namely
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
which, for can be written as
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
where is the Hurwitz zeta function.
The alternate notation
![]() |
(6) |
is sometimes used, with the two notations connected by
![]() |
(7) |
Unfortunately, Morse and Feshbach (1953) adopt a notation no longer in standard use in which Morse and Feshbach's "" is equal to
in the usual notation. Also note that the function
is equivalent to the digamma function
and
is sometimes known as the trigamma function.
is implemented in the Wolfram Language as PolyGamma[n, z] for positive integer
. In fact, PolyGamma[nu, z] is supported for all complex
(Grossman 1976; Espinosa and Moll 2004).
The polygamma function obeys the recurrence relation
![]() |
(8) |
the reflection formula
![]() |
(9) |
and the multiplication formula,
![]() |
(10) |
where is the Kronecker delta.
The polygamma function is related to the Riemann zeta function and the generalized harmonic numbers
by
![]() |
(11) |
for , 2, ..., and in terms of the Hurwitz zeta function
as
![]() |
(12) |
The Euler-Mascheroni constant is a special value of the digamma function , with
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
In general, special values for integral indices are given by
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
giving the digamma function, trigamma function, and tetragamma function identities
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
and so on.
The polygamma function can be expressed in terms of Clausen functions for rational arguments and integer indices. Special cases are given by
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
where is Catalan's constant,
is the Riemann zeta function, and
is the Dirichlet beta function.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Polygamma Functions." §6.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.
Adamchik, V. S. "Polygamma Functions of Negative Order." J. Comput. Appl. Math. 100, 191-199, 1999.
Arfken, G. "Digamma and Polygamma Functions." §10.2 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 549-555, 1985.
Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, p. 163, 1985.
Davis, H. T. Tables of the Higher Mathematical Functions. Bloomington, IN: Principia Press, 1933.
Espinosa, O. and Moll, V. H. "A Generalized Polygamma Function." Integral Trans. Special Func. 15, 101-115, 2004.
Grossman, N. "Polygamma Functions of Arbitrary Order." SIAM J. Math. Anal. 7, 366-372, 1976.
Hansen, E. R. A Table of Series and Products. Englewood Cliffs, NJ: Prentice-Hall, 1975.
Kölbig, K. S. "The Polygamma Function for
and
." J. Comp. Appl. Math. 75, 43-46, 1996.
Kölbig, K. S. "The Polygamma Function and the Derivatives of the Cotangent Function for Rational Arguments." Report CN/96/5. CERN Computing and Networks Division, 1996.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 422-424, 1953.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|