المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

القرع [اليقطين]
11-4-2017
Central Difference
25-11-2021
اسماء وصفات الالهة عند عرب قبل الاسلام
16-1-2017
طرق التعدين الحيوي
1-2-2016
أسباب العناد ودوافعه عند الأطفال
6/9/2022
ما اسم أبو بكر؟ وهل كان من اتباع رسول الله؟
2024-10-19

Gaussian Function  
  
2486   01:53 صباحاً   date: 2-5-2019
Author : MacTutor History of Mathematics Archive. "Frequency Curve." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Frequency.html.
Book or Source : MacTutor History of Mathematics Archive. "Frequency Curve." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Frequency.html.
Page and Part : ...


Read More
Date: 9-8-2019 1452
Date: 30-6-2019 1667
Date: 7-8-2019 1124

Gaussian Function

 

GaussianReal
 
 
             
  Min Max      

GaussianReImAbs
 
 
  Min   Max    
  Re    
  Im      

In one dimension, the Gaussian function is the probability density function of the normal distribution,

 f(x)=1/(sigmasqrt(2pi))e^(-(x-mu)^2/(2sigma^2)),

(1)

sometimes also called the frequency curve. The full width at half maximum (FWHM) for a Gaussian is found by finding the half-maximum points x_0. The constant scaling factor can be ignored, so we must solve

 e^(-(x_0-mu)^2/(2sigma^2))=1/2f(x_(max))

(2)

But f(x_(max)) occurs at x_(max)=mu, so

 e^(-(x_0-mu)^2/(2sigma^2))=1/2f(mu)=1/2.

(3)

Solving,

 e^(-(x_0-mu)^2/(2sigma^2))=2^(-1)

(4)

 -((x_0-mu)^2)/(2sigma^2)=-ln2

(5)

 (x_0-mu)^2=2sigma^2ln2

(6)

 x_0=+/-sigmasqrt(2ln2)+mu.

(7)

The full width at half maximum is therefore given by

 FWHM=x_+-x_-=2sqrt(2ln2)sigma approx 2.3548sigma.

(8)

GaussianFunction2D

In two dimensions, the circular Gaussian function is the distribution function for uncorrelated variates X and Y having a bivariate normal distribution and equal standard deviation sigma=sigma_x=sigma_y,

 f(x,y)=1/(2pisigma^2)e^(-[(x-mu_x)^2+(y-mu_y)^2]/(2sigma^2)).

(9)

The corresponding elliptical Gaussian function corresponding to sigma_x!=sigma_y is given by

 f(x,y)=1/(2pisigma_xsigma_y)e^(-[(x-mu_x)^2/(2sigma_x^2)+(y-mu_y)^2/(2sigma_y^2)]).

(10)

GaussianApodization

The Gaussian function can also be used as an apodization function

 A(x)=e^(-x^2/(2sigma^2)),

(11)

shown above with the corresponding instrument function. The instrument function is

 I(k)=e^(-2pi^2k^2sigma^2)sigmasqrt(pi/2)[erf((a-2piiksigma^2)/(sigmasqrt(2)))+erf((a+2piiksigma^2)/(sigmasqrt(2)))],

(12)

which has maximum

 I_(max)=sigmasqrt(2pi)erf(a/(sigmasqrt(2))).

(13)

As a->infty, equation (12) reduces to

 lim_(a->infty)I(k)=sigmasqrt(2pi)e^(-2pi^2k^2sigma^2).

(14)

The hypergeometric function is also sometimes known as the Gaussian function.


REFERENCES:

MacTutor History of Mathematics Archive. "Frequency Curve." http://www-groups.dcs.st-and.ac.uk/~history/Curves/Frequency.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.