Read More
Date: 1-8-2019
![]()
Date: 9-9-2019
![]()
Date: 22-4-2019
![]() |
The elliptic logarithm is generalization of integrals of the form
![]() |
for real, which can be expressed in terms of logarithmic and inverse trigonometric functions, to
![]() |
for and
real. This integral can be done analytically, but has a complicated form involving incomplete elliptic integrals of the first kind with complex parameters. The plots above show the special case
.
The elliptic logarithm is implemented in the Wolfram Language as EllipticLog[x, y
,
a, b
], where
is an unfortunate and superfluous parameter that must be set to either
or
and which multiplies the above integral by a factor of
.
The inverse of the elliptic logarithm is the elliptic exponential function.
REFERENCES:
Wolfram, S. The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media, p. 788, 2003.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
قسم الشؤون الفكرية ينظم ندوة ثقافية بذكرى فاجعة هدم قبور أئمة البقيع (عليهم السلام)
|
|
|