Read More
Date: 9-9-2019
2328
Date: 18-6-2019
1754
Date: 17-6-2019
1621
|
The Weierstrass zeta function is the quasiperiodic function defined by
(1) |
where is the Weierstrass elliptic function with invariants and , with
(2) |
As in the case of other Weierstrass elliptic functions, the elliptic invariants and are frequently suppressed for compactness. The function is implemented in the Wolfram Language as WeierstrassZeta[u, g2, g3].
Using the definition above gives
(3) |
|||
(4) |
where , so
(5) |
so is an odd function. Integrating gives
(6) |
Letting gives
(7) |
so
(8) |
Similarly,
(9) |
From Whittaker and Watson (1990),
(10) |
If , then
(11) |
(Whittaker and Watson 1990, p. 446). Also,
(12) |
(Whittaker and Watson 1990, p. 446).
The series expansion of is given by
(13) |
where
(14) |
|||
(15) |
and
(16) |
for (Abramowitz and Stegun 1972, p. 635). The first few coefficients are therefore
(17) |
|||
(18) |
|||
(19) |
|||
(20) |
|||
(21) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Weierstrass Elliptic and Related Functions." Ch. 18 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 627-671, 1972.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
Tölke, F. "Spezielle Weierstraßsche Zeta-Funktionen." Ch. 8 in Praktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 145-163, 1967.
Whittaker, E. T. and Watson, G. N. "Quasi-Periodic Functions. The Function " and "The Quasi-Periodicity of the Function ." §20.4 and 20.41 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 445-447 and 449-451, 1990.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|