 
					
					
						Jacobi Amplitude					
				 
				
					
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.
						 المؤلف:  
						Abramowitz, M. and Stegun, I. A.					
					
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
						 المصدر:  
						Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 22-4-2019
						22-4-2019
					
					
						 2191
						2191					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Jacobi Amplitude
 
The variable  (also denoted
 (also denoted  ) used in elliptic functions and elliptic integrals is called the amplitude (or Jacobi amplitude). It can be defined by
) used in elliptic functions and elliptic integrals is called the amplitude (or Jacobi amplitude). It can be defined by
where  is a Jacobi elliptic function with elliptic modulus. As is common with Jacobi elliptic functions, the modulus
 is a Jacobi elliptic function with elliptic modulus. As is common with Jacobi elliptic functions, the modulus  is often suppressed for conciseness. The Jacobi amplitude is the inverse function of the elliptic integral of the first kind. The amplitude function is implemented in the Wolfram Language as JacobiAmplitude[u, m], where
 is often suppressed for conciseness. The Jacobi amplitude is the inverse function of the elliptic integral of the first kind. The amplitude function is implemented in the Wolfram Language as JacobiAmplitude[u, m], where  is the parameter.
 is the parameter.
It is related to the elliptic integral of the first kind  by
 by
	
		
			|  | (3) | 
	
(Abramowitz and Stegun 1972, p. 589).
The derivative of the Jacobi amplitude is given by
	
		
			|  | (4) | 
	
or using the notation  ,
,
	
		
			|  | (5) | 
	
The amplitude function has the special values
where  is a complete elliptic integral of the first kind. In addition, it obeys the identities
 is a complete elliptic integral of the first kind. In addition, it obeys the identities
which serve as definitions for the Jacobi elliptic functions.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 589-590, 1972.
Fischer, G. (Ed.). Plate 132 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband.Braunschweig, Germany: Vieweg, p. 129, 1986.
Jacobi, C. G. J. J. für Math. 18, 12 and 20, 1838.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 494, 1990.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة