المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24

يوم الحسرة
20-10-2014
Adjuvants
25-12-2020
حوي.
2024-08-23
تفسير الآية (15-22) من سورة السجدة
29-5-2020
القيـادة والقـوة ( القـوة Power وفـعاليـة استخدامـها The Effective use of Power)
17-10-2021
اكتشاف حمض كلور الماء
6-6-2018

Hankel Function of the First Kind  
  
1758   02:33 مساءً   date: 24-3-2019
Author : Arfken, G.
Book or Source : "Hankel Functions." §11.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
Page and Part : ...


Read More
Date: 21-8-2018 1644
Date: 21-7-2019 1538
Date: 4-8-2019 2514

Hankel Function of the First Kind

 

The Hankel functions of the first kind are defined as

 H_n^((1))(z)=J_n(z)+iY_n(z),

(1)

where J_n(z) is a Bessel function of the first kind and Y_n(z) is a Bessel function of the second kind. Hankel functions of the first kind is implemented in the Wolfram Language as HankelH1[nz].

Hankel functions of the first kind can be represented as a contour integral over the upper half-plane using

 H_n^((1))(z)=1/(ipi)int_(0 [upper half plane])^infty(e^((z/2)(t-1/t)))/(t^(n+1))dt.

(2)

The derivative of H_n^((1))(z) is given by

 d/(dz)H_n^((1))(z)=(nH_n^((1))(z))/z-H_(n+1)^((1))(z).

(3)

HankelH1ReImHankelH1Contours

The plots above show the structure of H_0^((1))(z) in the complex plane.


REFERENCES:

Arfken, G. "Hankel Functions." §11.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 604-610, 1985.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 623-624, 1953.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.