المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

عنَّف الله المجرمين وذكر عقوبتهم
2-12-2015
أبو دقيق الخبيزة Vanessa cardui (L.)
3-4-2018
goal (n.)
2023-09-13
Interacting processes
29-3-2022
حكم من زاد على الرباعية خامسة سهوا.
10-1-2016
المبيدات الميكروبية
10-12-2015

Bessel Function Neumann Series  
  
1204   02:09 مساءً   date: 24-3-2019
Author : Watson, G. N
Book or Source : A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.
Page and Part : ...


Read More
Date: 22-5-2019 1116
Date: 19-5-2018 1931
Date: 3-6-2019 4344

Bessel Function Neumann Series
A series of the form

 sum_(n=0)^inftya_nJ_(nu+n)(z),

(1)

where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are

 z^nu=2^nuGamma(1/2nu+1)sum_(n=0)^infty((1/2z)^(nu/2+n))/(n!)J_(nu/2+n)(z),

(2)

where Gamma(z) is the gamma function, and

 sum_(n=0)^inftyb_nz^(nu+n)=sum_(n=0)^inftya_n(1/2z)^((nu+n)/2)J_((nu+n)/2)(z),

(3)

where

 a_n=sum_(m=0)^(|_n/2_|)(2^(nu+n-2m)Gamma(1/2nu+1/2n-m+1))/(m!)b_(n-2m),

(4)

and |_x_| is the floor function.


REFERENCES:

Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.