Read More
Date: 24-4-2019
1254
Date: 17-4-2019
1447
Date: 17-2-2016
1655
|
The formation of carbon oxides is due to electronic configurations of carbon and oxygen. They have 4 and 6 valence electrons respectively. Using these valence electrons, we can give the Lewis dot structure for CO and three resonance structures for CO2 as follows:
.. .. .. ..
:C:::O: :O::C::O: « :O:C:::O: « :O:::C:O:
'' ''
These formulas suggest very strong bonding between carbon and oxygen in these gaseous molecules: triple bond in CºO, and double bonds in O=C=O. However, a formula containing a triple bond contribute to the resonance structure.
The molecular orbital (MO) approach for CO is describe in the lecture, and the MO energy level diagram has been given there. The plots of contours of equal electron densities has also been shown in earlier lectures, and the diagram for CO molecular orbitals is shown below:
The valence bond approach for CO2 bonding is also very interesting. The two sp hybrid orbitals of central carbon overlaps with one p orbital from each of the oxygen atoms to from the two C-O s bonds in O-C-O. The two remaining p orbitals of carbon overlap with a p orbital each of the two oxygen atoms forming two p bonds, leading to the formation of O=C=O.
Here is a challenge: find a suitable diagram for either valence bond approach or for the MO approach for carbon dioxide in the web.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|