Read More
Date: 25-11-2018
507
Date: 27-11-2018
457
Date: 16-12-2018
517
|
The winding number of a contour about a point , denoted , is defined by
and gives the number of times curve passes (counterclockwise) around a point. Counterclockwise winding is assigned a positive winding number, while clockwise winding is assigned a negative winding number. The winding number is also called the index, and denoted .
The contour winding number was part of the inspiration for the idea of the Brouwer degree between two compact, oriented manifolds of the same dimension. In the language of the degree of a map, if is a closed curve (i.e., ), then it can be considered as a function from to . In that context, the winding number of around a point in is given by the degree of the map
from the circle to the circle.
REFERENCES:
Krantz, S. G. "The Index or Winding Number of a Curve about a Point." §4.4.4 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 49-50, 1999.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|