

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
i
المؤلف:
Asimov, I
المصدر:
"The Imaginary." Super Science Stories. Nov. 1942. Reprinted in The Early Asimov, Book One. Del Rey,
الجزء والصفحة:
...
24-10-2018
1909
i
"The" imaginary number
(also called the imaginary unit) is defined as the square root of
, i.e.,
. Although there are two possible square roots of any number, the square roots of a negative number cannot be distinguished until one of the two is defined as the imaginary unit, at which point
and
can then be distinguished. Since either choice is possible, there is no ambiguity in defining
as "the" square root of
.
In the Wolfram Language, the imaginary number is implemented as I. For some reason, engineers and physicists prefer the symbol j to
, probably because the symbol
(or
) is commonly used to denote current.
In the novel The Da Vinci Code, the character Robert Langdon jokes that character Sophie Neveu "believes in the imaginary number
because it helps her break code" (Brown 2003, p. 351). In the movie Proof (2005), the character Hal Dobbs (played by Jake Gyllenhaal) is a mathematics graduate student whose rock-and-roll band "plays" a song called "
." The joke is that when the band "plays" the song, they remain silent and motionless for several minutes since the song is "imaginary." In Isaac Asimov's short story "The Imaginary" (1942), eccentric psychologist Tan Porus explains the behavior of a mysterious species of squid by using imaginary numbers in the equations which describe its psychology. The anthology Imaginary Numbers: An Anthology of Marvelous Mathematical Stories, Diversions, Poems, and Musings (Frucht 2000) includes many other works involving imaginary numbers.
Numbers of the form
, where
is a real number, are called imaginary numbers (or sometimes, for emphasis, purely imaginary numbers). Numbers of the form
where
and
are real numbers are called complex numbers, and when
is used to denote a complex number, it is sometimes (in older texts) called an "affix."
The square root of
is
![]() |
(1) |
since
![]() |
(2) |
This can be immediately derived from the Euler formula with
,
![]() |
(3) |
![]() |
(4) |
Amazingly, the principal value of
is a real number given by
![]() |
(5) |
(OEIS A049006; Uhler 1921; Wells 1986, p. 26; Derbyshire 2004, p. 205).

Interestingly, all higher-order power towers have complex values, but the infinite power tower converges to the value
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
(OEIS A077589 and A077590; Macintyre 1966), where
is the Lambert W-function, as illustrated above.
The following mathematical joke exhibits the strange way in which mathematicians think. "Rrrrrring. Operator: I'm sorry, the number you have dialed is imaginary. Please multiply by
and dial again." A variant of this joke, actually left on one mathematician's phone by his son states, "I'm sorry, the number you have dialed is an imaginary number. Please rotate by
and try again." Taking this joke one step further gives the "identity"
![]() |
(9) |
REFERENCES:
Asimov, I. "The Imaginary." Super Science Stories. Nov. 1942. Reprinted in The Early Asimov, Book One. Del Rey, pp. 246-262, 1986.
Brown, D. The Da Vinci Code. New York: Doubleday, 2003.
Courant, R. and Robbins, H. What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, p. 89, 1996.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Frucht, W. (Ed.). Imaginary Numbers: An Anthology of Marvelous Mathematical Stories, Diversions, Poems, and Musings, 2nd ed. New York: Wiley, 2000.
Nahin, P. J. An Imaginary Tale: The Story of -1. Princeton, NJ: Princeton University Press, 2007.
Macintyre, A. J. "Convergence of
." Proc. Amer. Math. Soc. 17, 67, 1966.
Mazur, B. Imagining Numbers (Particularly the Square Root of Minus Fifteen). New York: Farrar, Straus and Giroux, 2003.
Sloane, N. J. A. Sequences A049006, A077589, and A077590 in "The On-Line Encyclopedia of Integer Sequences."
Uhler, S. "On the Numerical Value of
." Amer. Math. Monthly 28, 114-116, 1921.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 26, 1986.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


![[1/(sqrt(2))(i+1)]^2=1/2(i^2+2i+1)=i.](http://mathworld.wolfram.com/images/equations/i/NumberedEquation2.gif)













قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)