 
					
					
						Jacobian 					
				 
				
					
						 المؤلف:  
						Gradshteyn, I. S. and Ryzhik, I. M
						 المؤلف:  
						Gradshteyn, I. S. and Ryzhik, I. M					
					
						 المصدر:  
						"Jacobian Determinant." §14.313 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press
						 المصدر:  
						"Jacobian Determinant." §14.313 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 29-9-2018
						29-9-2018
					
					
						 3842
						3842					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Jacobian 
Given a set  of
 of  equations in
 equations in  variables
 variables  , ...,
, ...,  , written explicitly as
, written explicitly as
	
		
			| ![y=[f_1(x); f_2(x); |; f_n(x)],](http://mathworld.wolfram.com/images/equations/Jacobian/NumberedEquation1.gif) | (1) | 
	
or more explicitly as
	
		
			| ![<span style=]() {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), " src="http://mathworld.wolfram.com/images/equations/Jacobian/NumberedEquation2.gif" style="height:62px; width:122px" /> | (2) | 
	
the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by
	
		
			| ![J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)].](http://mathworld.wolfram.com/images/equations/Jacobian/NumberedEquation3.gif) | (3) | 
	
The determinant of  is the Jacobian determinant (confusingly, often called "the Jacobian" as well) and is denoted
 is the Jacobian determinant (confusingly, often called "the Jacobian" as well) and is denoted
	
		
			|  | (4) | 
	
The Jacobian matrix and determinant can be computed in the Wolfram Language using
  JacobianMatrix[f_List?VectorQ, x_List] :=
    Outer[D, f, x] /; Equal @@ (Dimensions /@ {f, x})
  JacobianDeterminant[f_List?VectorQ, x_List] :=
    Det[JacobianMatrix[f, x]] /;
      Equal @@ (Dimensions /@ {f, x})
Taking the differential
	
		
			|  | (5) | 
	
shows that  is the determinant of the matrix
 is the determinant of the matrix  , and therefore gives the ratios of
, and therefore gives the ratios of  -dimensional volumes (contents) in
-dimensional volumes (contents) in  and
 and  ,
,
	
		
			|  | (6) | 
	
It therefore appears, for example, in the change of variables theorem.
The concept of the Jacobian can also be applied to  functions in more than
 functions in more than  variables. For example, considering
 variables. For example, considering  and
and  , the Jacobians
, the Jacobians
can be defined (Kaplan 1984, p. 99).
For the case of  variables, the Jacobian takes the special form
 variables, the Jacobian takes the special form
	
		
			|  | (9) | 
	
where  is the dot product and
 is the dot product and  is the cross product, which can be expanded to give
 is the cross product, which can be expanded to give
	
		
			|  | (10) | 
	
 
REFERENCES:
Gradshteyn, I. S. and Ryzhik, I. M. "Jacobian Determinant." §14.313 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 1068-1069, 2000.
Kaplan, W. Advanced Calculus, 3rd ed. Reading, MA: Addison-Wesley, pp. 98-99, 123, and 238-245, 1984.
Simon, C. P. and Blume, L. E. Mathematics for Economists. New York: W. W. Norton, 1994.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة