 
					
					
						Mean-Value Theorem					
				 
				
					
						 المؤلف:  
						Gradshteyn, I. S. and Ryzhik, I. M
						 المؤلف:  
						Gradshteyn, I. S. and Ryzhik, I. M					
					
						 المصدر:  
						ables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press
						 المصدر:  
						ables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 29-9-2018
						29-9-2018
					
					
						 2050
						2050					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Mean-Value Theorem
Let  be differentiable on the open interval
 be differentiable on the open interval  and continuous on the closed interval
 and continuous on the closed interval ![[a,b]](http://mathworld.wolfram.com/images/equations/Mean-ValueTheorem/Inline3.gif) . Then there is at least one point
. Then there is at least one point  in
 in  such that
 such that
The theorem can be generalized to Cauchy's mean-value theorem.
REFERENCES:
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, pp. 1097-1098, 2000.
Jeffreys, H. and Jeffreys, B. S. "Mean-Value Theorems." §1.13 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 49-50, 1988.
				
				
					
					 الاكثر قراءة في  التفاضل و التكامل
					 الاكثر قراءة في  التفاضل و التكامل 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة