Read More
Date: 12-6-2018
![]()
Date: 30-12-2018
![]()
Date: 3-7-2018
![]() |
Critical damping is a special case of damped simple harmonic motion
![]() |
(1) |
in which
![]() |
(2) |
where is the damping constant. Therefore
![]() |
(3) |
In this case, so the solutions of the form
satisfy
![]() |
(4) |
One of the solutions is therefore
![]() |
(5) |
In order to find the other linearly independent solution, we can make use of the identity
![]() |
(6) |
Since we have ,
simplifies to
. Equation (6) therefore becomes
![]() |
(7) |
The general solution is therefore
![]() |
(8) |
In terms of the constants and
, the initial values are
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
so
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
The above plot shows a critically damped simple harmonic oscillator with ,
for a variety of initial conditions
.
For sinusoidally forced simple harmonic motion with critical damping, the equation of motion is
![]() |
(13) |
and the Wronskian is
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
Plugging this into the equation for the particular solution gives
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
Applying the harmonic addition theorem then gives
![]() |
(18) |
where
![]() |
(19) |
REFERENCES:
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, p. 528, 1984.
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|