Read More
Date: 27-5-2018
![]()
Date: 12-6-2018
![]()
Date: 5-7-2018
![]() |
Any locally compact Hausdorff topological group has a unique (up to scalars) nonzero left invariant measure which is finite on compact sets. If the group is Abelian or compact, then this measure is also right invariant and is known as the Haar measure.
More formally, let be a locally compact group. Then a left invariant Haar measure on
is a Borel measure
satisfying the following conditions:
1. for every
and every measurable
.
2. for every nonempty open set
.
3. for every compact set
.
For example, the Lebesgue measure is an invariant Haar measure on real numbers.
In addition, if is an (algebraic) group, then
with the discrete topology is a locally compact group. A left invariant Haar measure on
is the counting measure on
.
REFERENCES:
Conway, J. A Course in Functional Analysis. New York: Springer-Verlag, 1990.
Feldman M. and Gilles, C. "An Expository Note on Individual Risk Without Aggregate Uncertainty." J. Econ. Theory 35, 26-32, 1985.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|