المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

من علامات الزاهد في الدنيا
20-6-2022
كيفية الوضوء وجملة أحكامه
2024-10-15
أسرار تغيير القبلة
8-10-2014
Aspiring Number
22-11-2020
acute (adj.)
2023-05-08
الشروط الواجب توافرها في عبوة الموادة الغذائية
2-1-2018

Directional Derivative  
  
1820   01:17 مساءً   date: 15-5-2018
Author : Kaplan
Book or Source :
Page and Part : ...


Read More
Date: 7-9-2019 1251
Date: 30-3-2019 4879
Date: 18-9-2019 1103

Directional Derivative

The directional derivative del _(u)f(x_0,y_0,z_0) is the rate at which the function f(x,y,z) changes at a point (x_0,y_0,z_0) in the direction u. It is a vector form of the usual derivative, and can be defined as

del _(u)f = del f·(u)/(|u|)
(1)
= lim_(h->0)(f(x+hu^^)-f(x))/h,
(2)

where del  is called "nabla" or "del" and u^^ denotes a unit vector.

The directional derivative is also often written in the notation

d/(ds) = s^^·del
(3)
= s_xpartial/(partialx)+s_ypartial/(partialy)+s_zpartial/(partialz),
(4)

where s denotes a unit vector in any given direction and partialf/partialx=f_x denotes a partial derivative.

Let u^^=(u_x,u_y,u_z) be a unit vector in Cartesian coordinates, so

 |u^^|=sqrt(u_x^2+u_y^2+u_z^2)=1,
(5)

then

 del _(u^^)f=(partialf)/(partialx)u_x+(partialf)/(partialy)u_y+(partialf)/(partialz)u_z.

 

 

REFERENCES:

Kaplan, W. "The Directional Derivative." §2.14 in Advanced Calculus, 4th ed. Reading, MA: Addison-Wesley, pp. 135-138, 1991.

Morse, P. M. and Feshbach, H. "Directional Derivatives." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 32-33, 1953.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.