المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Chain Rule  
  
1997   01:52 مساءً   date: 14-5-2018
Author : Anton
Book or Source : "The Chain Rule" and "Proof of the Chain Rule." §3.5 and AIII in Calculus with Analytic Geometry, 2nd ed. New York: Wiley
Page and Part : ...


Read More
Date: 18-8-2019 1196
Date: 22-5-2019 1208
Date: 31-7-2019 1265

Chain Rule

If g(x) is differentiable at the point x and f(x) is differentiable at the point g(x), then f degreesg is differentiable at x. Furthermore, let y=f(g(x)) and u=g(x), then

 (dy)/(dx)=(dy)/(du)·(du)/(dx).
(1)

There are a number of related results that also go under the name of "chain rules." For example, if z=f(x,y)x=g(t), and y=h(t), then

 (dz)/(dt)=(partialz)/(partialx)(dx)/(dt)+(partialz)/(partialy)(dy)/(dt).
(2)

The "general" chain rule applies to two sets of functions

y_1 = f_1(u_1,...,u_p)
(3)
|
(4)
y_m = f_m(u_1,...,u_p)
(5)

and

u_1 = g_1(x_1,...,x_n)
(6)
|
(7)
u_p = g_p(x_1,...,x_n).
(8)

Defining the m×n Jacobi rotation matrix by

 ((partialy_i)/(partialx_j))=[(partialy_1)/(partialx_1) (partialy_1)/(partialx_2) ... (partialy_1)/(partialx_n); | | ... |; (partialy_m)/(partialx_1) (partialy_m)/(partialx_2) ... (partialy_m)/(partialx_n)],
(9)

and similarly for (partialy_i/partialu_j) and (partialu_i/partialx_j), then gives

 ((partialy_i)/(partialx_j))=((partialy_i)/(partialu_i))((partialu_i)/(partialx_j)).
(10)

In differential form, this becomes

 dy_1=((partialy_1)/(partialu_1)(partialu_1)/(partialx_1)+...+(partialy_1)/(partialu_p)(partialu_p)/(partialx_1))dx_1+((partialy_1)/(partialu_1)(partialu_1)/(partialx_2)+...+(partialy_1)/(partialu_p)(partialu_p)/(partialx_2))dx_2+...
(11)

(Kaplan 1984).


 

REFERENCES:

Anton, H. "The Chain Rule" and "Proof of the Chain Rule." §3.5 and AIII in Calculus with Analytic Geometry, 2nd ed. New York: Wiley, pp. 165-171 and A44-A46, 1999.

Apostol, T. M. "The Chain Rule for Differentiating Composite Functions" and "Applications of the Chain Rule. Related Rates and Implicit Differentiation." §4.10-4.11 in Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 174-179, 1967.

Kaplan, W. "Derivatives and Differentials of Composite Functions" and "The General Chain Rule." §2.8 and 2.9 in Advanced Calculus, 3rd ed. Reading, MA: Addison-Wesley, pp. 101-105 and 106-110, 1984.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.