تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Nuclear Synthesis
المؤلف: Franklin Potter and Christopher Jargodzki
المصدر: Mad about Modern Physics
الجزء والصفحة: p 94
6-11-2016
207
Nuclear Synthesis
The championship of nuclear binding energy is often attributed to Fe-56, meaning that Fe-56 has the greatest binding energy per nucleon and therefore is the most stable nucleus. Most elements are synthesized in stars. Supposedly, elements higher on the periodic chart than Fe cannot be synthesized in normal star burning cycles. Why not? Actually, the sequence of nuclear synthesis does not stop at iron, because Ni also is synthesized. What happens to the Ni isotopes that are synthesized?
Answer
Look at the binding energy curve for the elements and you will see that at least one isotope of Ni is well bound. Unfortunately, this isotope has a rapid decay mode. In fact, all the Ni isotopes from Ni-49 to Ni-57 have half-lives of only milliseconds to at most 10 days.
Although the championship of nuclear binding energy is often attributed to Fe-56, this isotope actually comes in third. The most tightly bound of the nuclei is Ni-62. The binding energies are 8.790 MeV/nucleon for Fe- 56 and 8.795 MeV/nucleon for Ni-62. The binding-energy curve shows those nuclides that are close to the peak.
The most tightly bound nuclides are all even-even nuclei. Fe-56 is about a factor of ten more abundant in stars than Ni-62. The Fewell reference below indicates that the reason lies with the greater photodisintegration rate for Ni-62 in stellar interiors. Others have suggested that the very low rate of multistep production of Ni-62 from Co-59 is the culprit.