تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Nuclear Energy Levels
المؤلف: Franklin Potter and Christopher Jargodzki
المصدر: Mad about Modern Physics
الجزء والصفحة: p 93
6-11-2016
244
Nuclear Energy Levels
In the 1930s and 1940s, physicists working on the energy states of the nucleus of an atom concentrated on various models, including a shell model using the Schrodinger equation with an approximately constant electrical potential inside the nucleus. Conceptually, each nucleon is in a well-defined orbit within the nucleus and moves in an averaged field produced by all the other nucleons. However, even though quantum
states such as n = 1, with l = 0, 1, 2, 3, etc., are possible in the shell model, the predicted energy levels did not fit the data. In fact, the actual energy levels were all scrambled compared to the shell-model theoretical predictions. Why?
Answer
Even the shell model, often called the independent particle model of the nucleus, fails to correctly predict many of the energy level spacings unless the spin-orbit LS interactions are included. That is, the proton and neutron magnetic moments interact with magnetic fields produced by their orbital motions. These LS interactions add terms to the approximate constant potential of the shell model to dominate the quantum state sequence inside the nucleus. As a result, many energy levels change their relative positions on the energy scale, with levels from different principle quantum numbers becoming interchanged! Once the LS interaction was properly accounted for, all its predictions were shown to agree with the empirical data.
This model of the nucleus also explained why nuclei containing an even number of protons and neutrons are more stable than others. Like the energy levels for the electrons in quantum states outside the nucleus, the Fermi exclusion principle allows two identical particles per quantum state only. The nuclear quantum states for the protons are separate from the nuclear quantum states for the neutrons, and any particular state is filled when there are two identical particles with opposite spins. The proton levels are higher in energy than the corresponding neutron levels because there is the added Coulomb repulsion. Any extra proton or neutron can be added, but this additional particle must occupy a higher energy state, usually leading to an unstable nucleus.