1

المرجع الالكتروني للمعلوماتية

تاريخ الفيزياء

علماء الفيزياء

الفيزياء الكلاسيكية

الميكانيك

الديناميكا الحرارية

الكهربائية والمغناطيسية

الكهربائية

المغناطيسية

الكهرومغناطيسية

علم البصريات

تاريخ علم البصريات

الضوء

مواضيع عامة في علم البصريات

الصوت

الفيزياء الحديثة

النظرية النسبية

النظرية النسبية الخاصة

النظرية النسبية العامة

مواضيع عامة في النظرية النسبية

ميكانيكا الكم

الفيزياء الذرية

الفيزياء الجزيئية

الفيزياء النووية

مواضيع عامة في الفيزياء النووية

النشاط الاشعاعي

فيزياء الحالة الصلبة

الموصلات

أشباه الموصلات

العوازل

مواضيع عامة في الفيزياء الصلبة

فيزياء الجوامد

الليزر

أنواع الليزر

بعض تطبيقات الليزر

مواضيع عامة في الليزر

علم الفلك

تاريخ وعلماء علم الفلك

الثقوب السوداء

المجموعة الشمسية

الشمس

كوكب عطارد

كوكب الزهرة

كوكب الأرض

كوكب المريخ

كوكب المشتري

كوكب زحل

كوكب أورانوس

كوكب نبتون

كوكب بلوتو

القمر

كواكب ومواضيع اخرى

مواضيع عامة في علم الفلك

النجوم

البلازما

الألكترونيات

خواص المادة

الطاقة البديلة

الطاقة الشمسية

مواضيع عامة في الطاقة البديلة

المد والجزر

فيزياء الجسيمات

الفيزياء والعلوم الأخرى

الفيزياء الكيميائية

الفيزياء الرياضية

الفيزياء الحيوية

الفيزياء العامة

مواضيع عامة في الفيزياء

تجارب فيزيائية

مصطلحات وتعاريف فيزيائية

وحدات القياس الفيزيائية

طرائف الفيزياء

مواضيع اخرى

علم الفيزياء : مواضيع عامة في الفيزياء : طرائف الفيزياء :

Deterministic Competition

المؤلف:  Franklin Potter and Christopher Jargodzki

المصدر:  Mad about Modern Physics

الجزء والصفحة:  p 57

18-10-2016

245

Deterministic Competition

Consider a simplified system, one that can be described by Nt objects at time t. For example, one could consider the number of grasshoppers on the plains of Africa, or on some small plot of land. Let there be competition between the growth processes and the decay processes so that the number of objects at time t + 1 is Nt + 1 = Nt exp[r (1 – Nt)], an exponential growth relationship. This equation is deterministic, for Nt determines Nt + 1 unambiguously. One can think of r as a measure of the ratio between growth and decay. Numerous mechanical, hydrodynamic, chemical, and electrical systems can be approximately modeled by this relationship.

How does the number of objects behave with elapsed time? If Nt = 1, then N remains 1 forever. In the general case, we can determine Nt as t→∞ to find out whether N approaches the equilibrium value 1. For instance, let r = 1 and begin with N0 = 0.5, and calculate with a calculator or personal computer. Now try different values for r. What behavior do you predict?

Answer

The time evolution here depends on the value of r. One finds that Nt = 1 is a stable equilibrium only when r lies between 0 and 2. If r = 2.3 with N0 = 0.5, then successive Nt will oscillate between about 1.59 and about 0.40 as a stable 2 cycle. For r > 3.102, no cycle is stable, all cycles are possible, etc.

In the chaotic regimes, the equation results are deterministic, but the time evolution is indistinguishable from that governed by probability laws. One really needs to see the calculations proceed to appreciate the amazing behavior of this simple-looking equation.

EN

تصفح الموقع بالشكل العمودي