

النبات

مواضيع عامة في علم النبات

الجذور - السيقان - الأوراق

النباتات الوعائية واللاوعائية

البذور (مغطاة البذور - عاريات البذور)

الطحالب

النباتات الطبية


الحيوان

مواضيع عامة في علم الحيوان

علم التشريح

التنوع الإحيائي

البايلوجيا الخلوية


الأحياء المجهرية

البكتيريا

الفطريات

الطفيليات

الفايروسات


علم الأمراض

الاورام

الامراض الوراثية

الامراض المناعية

الامراض المدارية

اضطرابات الدورة الدموية

مواضيع عامة في علم الامراض

الحشرات


التقانة الإحيائية

مواضيع عامة في التقانة الإحيائية


التقنية الحيوية المكروبية

التقنية الحيوية والميكروبات

الفعاليات الحيوية

وراثة الاحياء المجهرية

تصنيف الاحياء المجهرية

الاحياء المجهرية في الطبيعة

أيض الاجهاد

التقنية الحيوية والبيئة

التقنية الحيوية والطب

التقنية الحيوية والزراعة

التقنية الحيوية والصناعة

التقنية الحيوية والطاقة

البحار والطحالب الصغيرة

عزل البروتين

هندسة الجينات


التقنية الحياتية النانوية

مفاهيم التقنية الحيوية النانوية

التراكيب النانوية والمجاهر المستخدمة في رؤيتها

تصنيع وتخليق المواد النانوية

تطبيقات التقنية النانوية والحيوية النانوية

الرقائق والمتحسسات الحيوية

المصفوفات المجهرية وحاسوب الدنا

اللقاحات

البيئة والتلوث


علم الأجنة

اعضاء التكاثر وتشكل الاعراس

الاخصاب

التشطر

العصيبة وتشكل الجسيدات

تشكل اللواحق الجنينية

تكون المعيدة وظهور الطبقات الجنينية

مقدمة لعلم الاجنة


الأحياء الجزيئي

مواضيع عامة في الاحياء الجزيئي


علم وظائف الأعضاء


الغدد

مواضيع عامة في الغدد

الغدد الصم و هرموناتها

الجسم تحت السريري

الغدة النخامية

الغدة الكظرية

الغدة التناسلية

الغدة الدرقية والجار الدرقية

الغدة البنكرياسية

الغدة الصنوبرية

مواضيع عامة في علم وظائف الاعضاء

الخلية الحيوانية

الجهاز العصبي

أعضاء الحس

الجهاز العضلي

السوائل الجسمية

الجهاز الدوري والليمف

الجهاز التنفسي

الجهاز الهضمي

الجهاز البولي


المضادات الميكروبية

مواضيع عامة في المضادات الميكروبية

مضادات البكتيريا

مضادات الفطريات

مضادات الطفيليات

مضادات الفايروسات

علم الخلية

الوراثة

الأحياء العامة

المناعة

التحليلات المرضية

الكيمياء الحيوية

مواضيع متنوعة أخرى

الانزيمات
Proteins Follow Several Routes to be Inserted Into or Attached to The Membranes of The Endoplasmic Reticulum
المؤلف:
Peter J. Kennelly, Kathleen M. Botham, Owen P. McGuinness, Victor W. Rodwell, P. Anthony Weil
المصدر:
Harpers Illustrated Biochemistry
الجزء والصفحة:
32nd edition.p590-591
2026-01-04
81
The routes that proteins follow to be inserted into the mem branes of the ER include cotranslational insertion; posttranslational insertion; retention in the GA followed by retrieval to the ER; and retrograde transport from the GA.
Cotranslational Insertion Requires Stop Transfer Sequences or Internal Insertion Sequences
Figure 1 shows a variety of ways in which proteins are dis tributed in membranes. In particular, the amino termini of certain proteins (eg, the low-density lipoprotein [LDL] receptor) can be seen to be on the extracytoplasmic face, whereas for other proteins (eg, the asialoglycoprotein receptor) thecarboxyl termini are on this face. These dispositions are explained by the initial biosynthetic events at the ER membrane. Proteins like the LDL receptor enter the ER membrane in a manner analogous to a secretory protein; they partly traverse the ER membrane, the signal peptide is cleaved, and their amino terminal protrudes into the lumen. However, this type of protein contains a highly hydrophobic segment which acts as a halt- or stop-transfer signal and causes its retention in the membrane (Figure 2). This sequence has its N-terminal end in the ER lumen and the C-terminal in the cytosol; the stop-transfer signal forms the single transmembrane segment of the protein and is its membrane-anchoring domain. The protein is believed to exit the translocon into the membrane by a lateral gate which opens and closes continuously allowing hydrophobic sequences to enter the lipid bilayer.
Fig1. Variations in the way in which proteins are inserted into membranes. This schematic representation illustrates a number of possible orientations. The orientations form initially in the ER membrane, but are retained when vesicles bud off and fuse with the plasma membrane, so that the terminal initially facing the ER lumen always faces the outside of the cell. Type I transmembrane proteins (eg, the LDL receptor and influenza hemagglutinin) cross the membrane once and have their amino termini in the ER lumen/cell exterior. Type II trans membrane proteins (eg, the asialoglycoprotein and transferrin receptors) also cross the membrane once, but have their C-termini in the ER lumen/cell exterior. Type III transmembrane proteins (eg, cytochrome P450, an ER membrane protein) have a disposition similar to type I pro teins, but do not contain a cleavable signal peptide. Type IV transmembrane proteins (eg, G-protein–coupled receptors and glucose transporters) cross the membrane a number of times (7 times for the former and 12 times for the latter); they are also called polytopic membrane proteins. (C, carboxyl terminal; N, amino terminal.)
Fig2. Insertion of a membrane protein with a stop-transfer signal into the ER membrane.The protein enters the membrane in a similar way to a secretory protein, the signal peptide is cleaved as the polypeptide chain crosses the membrane, so the amino terminus of the polypeptide chain is exposed in the ER lumen. However, translocation of the polypeptide chain across the membrane is halted when the translocon recognizes a transmembrane stop-transfer sequence which is highly hydrophobic. The protein then exits the translocon channel via a lateral gate and become anchored in the ER membrane. Continued translation results in a membrane-spanning protein with its carboxy terminus on the cytosolic side. (Reproduced with permission from Cooper GM, Hausman RE: The Cell: A Molecular Approach, 6th ed. Sunderland, MA: Sinauer Associates, Inc, 2013.)
The small patch of ER membrane in which the newly synthesized LDL receptor is located subsequently buds off as a component of a transport vesicle which eventually fuses with the PM so that the C-terminal faces the cytosol and the N-terminal faces the outside of the cell. In contrast, the asialo-glycoprotein receptor lacks a cleavable N-terminal signal peptide, but possesses an internal insertion sequence, which inserts into the membrane but is not cleaved. This acts as an anchor, and its C-terminus is extruded through the membrane into the ER lumen. Cytochrome P450 is anchored in a similar way, but its N-terminal, rather than C-terminal, is extruded into the lumen. The more complex disposition of a trans membrane transporter (eg, for glucose) which may cross the membrane up to 12 times, can be explained by the fact that alternating transmembrane α-helices act as uncleaved insertion sequences and as halt-transfer signals, respectively. Each pair of helical segments is inserted as a hairpin. Sequences that determine the structure of a protein in a membrane are called topogenic sequences. The LDL receptor, asialoglycoprotein receptor, and glucose transporter are examples of types I, II, and IV transmembrane proteins and are found in the PM, while cytochrome P450 is an example of a type III protein which remains in the ER membrane (see Figure 1).
Some Proteins Are Synthesized on Free Polyribosomes & Attach to the Endoplasmic Reticulum Membrane Posttranslationally
Proteins may enter the ER membrane posttranslationally through the lateral gate in the translocon in a similar way to cotranslationally sorted molecules. An example is cytochrome b5 , which appears to enter the ER membrane subsequent to translation, assisted by several chaperones.
Other Routes Include Retention in the GA With Retrieval to the ER & Also Retrograde Transport From the GA
A number of proteins possess the amino acid sequence KDEL (Lys-Asp-Glu-Leu) at their carboxyl terminal (see Table 49–1). KDEL-containing proteins first travel to the GA in vesicles coated with coat protein II (COPII) (see later). This process is known as anterograde vesicular transport. In the GA, they interact with a specific KDEL receptor protein, which retains them transiently. They thenreturn to the ER in vesicles coated with coat protein I (COPI, retrograde vesicular transport), where they dissociate from the receptor, and are thus retrieved. HDEL sequences (H = histidine) serve a similar purpose. The above processes result in net localization of certain soluble proteins to the ER lumen.
Certain other non-KDEL–containing proteins also pass to the Golgi and then return, by retrograde vesicular trans port, to the ER to be inserted therein. These include vesicle components that must be recycled, as well as certain ER mem brane proteins. These proteins often possess a C-terminal signal located in the cytosol rich in basic residues.
Thus, proteins reach the ER membrane by a variety of routes, and similar pathways are likely to be used for other membranes (eg, the mitochondrial membranes and the PM). Precise targeting sequences have been identified in some instances (eg, KDEL sequences).
The topic of membrane biogenesis is discussed further later in this chapter.
الاكثر قراءة في الكيمياء الحيوية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)