Digestion & absorption of Proteins
المؤلف:
Peter J. Kennelly, Kathleen M. Botham, Owen P. McGuinness, Victor W. Rodwell, P. Anthony Weil
المصدر:
Harpers Illustrated Biochemistry
الجزء والصفحة:
32nd edition.p529-531
2025-12-09
74
Native proteins are resistant to digestion because few peptide bonds are accessible to the proteolytic enzymes without prior denaturation by heat in cooking and by the action of gastric acid.
Several Groups of Enzymes Catalyze the Digestion of Proteins
There are two main classes of proteolytic digestive enzymes (proteases), with different specificities for the amino acids forming the peptide bond to be hydrolyzed. Endopeptidases hydrolyze peptide bonds between specific amino acids throughout the molecule. They are the first enzymes to act, yielding a larger number of smaller fragments. Pepsin in the gastric juice catalyzes hydrolysis of peptide bonds adjacent to amino acids with bulky side-chains (aromatic and branched-chain amino acids and methionine). Trypsin, chymotrypsin, and elastase are secreted into the small intestine by the pancreas. Trypsin catalyzes hydrolysis of lysine and arginine amides, chymotrypsin amides of aromatic amino acids, and elastase amides of small neutral aliphatic amino acids. Exopeptidases catalyze the hydrolysis of peptide bonds, one at a time, from the ends of peptides. Carboxypeptidases, secreted in the pancreatic juice, release amino acids from the free carboxyl terminal; amino peptidases, secreted by the intestinal mucosal cells, release amino acids from the amino terminal. Dipeptidases and tripeptidases in the brush border of intestinal mucosal cells catalyze the hydrolysis of di- and tripeptides, which are not substrates for amino- and carboxypeptidases.
The proteases are secreted as inactive zymogens; the active site of the enzyme is masked by a small region of the peptide chain that is removed by hydrolysis of a specific peptide bond. Pepsinogen is activated to pepsin by gastric acid and by activated pepsin. In the small intestine, trypsinogen, the precursor of trypsin, is activated by enteropeptidase, which is secreted by the duodenal epithelial cells; trypsin can then activate chymotrypsinogen to chymotrypsin, proelastase to elastase, procarboxypeptidase to carboxypeptidase, and proaminopeptidase to aminopeptidase.
Free Amino Acids & Small Peptides Are Absorbed by Different Mechanisms
The end product of the action of endopeptidases and exopeptidases is a mixture of free amino acids, di- and tripeptides, and oligopeptides, all of which are absorbed. Free amino acids are absorbed across the intestinal mucosa by sodium-dependent active transport. There are several different amino acid transporters, with specificity for the nature of the amino acid side chain (large or small, neutral, acidic, or basic). The amino acids carried by any one transporter compete with each other for absorption and tissue uptake. Dipeptides and tripeptides enter the brush border of the intestinal mucosal cells, where they are hydrolyzed to free amino acids, which are then transported into the hepatic portal vein. Relatively large peptides may be absorbed intact, either by uptake into mucosal epithelial cells (transcellular) or by passing between epithelial cells (paracellular). Many such peptides are large enough to stimulate antibody formation—this is the basis of allergic reactions to foods.
الاكثر قراءة في الكيمياء الحيوية
اخر الاخبار
اخبار العتبة العباسية المقدسة