Glycosides in nature
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص1144-1146
2025-08-13
491
Glycosides in nature
Many alcohols, thiols, and amines occur in nature as glycosides, that is as O-, S-, or N-acetals at the anomeric position of glucose. The purpose of attaching these compounds to glucose is often to improve solubility or transport across membranes—to expel a toxin from the cell, for example. Sometimes glucose is attached in order to stabilize the compound so that glucose appears as nature’s protecting group.

O-Glycosides occur in immense variety with glucose and other sugars being joined to the OH groups of alcohols and phenols to form acetals. The stereochemistry of these compounds is usually described by the Greek letters α and β. If the OR bond is down, it’s an α-glycoside; if up, a β-glycoside. An attractive example is the pigment of red roses, which is an interesting aromatic oxygen heterocycle (an anthocyanidin). Two of the phenolic OH groups are present as β-glycosides.

It’s often proposed that there are special benefits to health in eating broccoli and brussels sprouts because of the sulfur-containing antioxidants they contain. These compounds are unstable isothiocyanates. They are not usually present in the plant; damage—by cutting or cooking, for example—induces a glycosidase (an enzyme which hydrolyses glycosides) to releases the sulfur compound from its glucose protection. A simple example is sinigrin. The S-glycosides of the sinigrin group start to hydrolyse in the same way. The sulfur atom is the better leaving group when it leaves as an anion (though worse than oxygen when the hydrolysis occurs in acidic conditions) and the anion is additionally stabilized by conjugation.

The next step is surprising. A rearrangement occurs, rather similar to the Beckmann re arrangement, in which the alkyl group migrates from carbon to nitrogen and an isothiocyanate (R–N=C=S) is formed. Sinigrin occurs in mustard and horseradish, and it is the release of the allyl isothiocyanate that gives these their ‘hot’ taste. When mustard powder is mixed with water, the hot taste develops over some minutes as sinigrin is hydrolysed to the isothiocyanate. The S-glycoside in broccoli and brussels sprouts that is proposed to offer protection from cancer is somewhat similar but has one more carbon atom in the chain and contains a sulfoxide group as well. Hydrolysis of the S-glycoside is followed by the same rearrangement, pro ducing a molecule called sulforaphane. Sulforaphane protects against cancer-causing oxidants by inducing the formation of a reductive enzyme.

الاكثر قراءة في مواضيع عامة في الكيمياء العضوية
اخر الاخبار
اخبار العتبة العباسية المقدسة